2025-06-11 17:31:35 +02:00
|
|
|
use std::cmp::{max, min};
|
2025-06-08 21:20:04 +02:00
|
|
|
|
2025-05-26 20:44:35 +02:00
|
|
|
use serde::{Deserialize, Serialize};
|
2025-06-08 21:20:04 +02:00
|
|
|
use store::{CheckerMove, Dice, GameEvent, PlayerId};
|
2025-06-01 20:00:15 +02:00
|
|
|
|
|
|
|
|
/// Types d'actions possibles dans le jeu
|
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
|
|
|
|
pub enum TrictracAction {
|
|
|
|
|
/// Lancer les dés
|
|
|
|
|
Roll,
|
|
|
|
|
/// Continuer après avoir gagné un trou
|
|
|
|
|
Go,
|
|
|
|
|
/// Effectuer un mouvement de pions
|
2025-06-01 20:21:38 +02:00
|
|
|
Move {
|
2025-06-08 21:20:04 +02:00
|
|
|
dice_order: bool, // true = utiliser dice[0] en premier, false = dice[1] en premier
|
|
|
|
|
from1: usize, // position de départ du premier pion (0-24)
|
|
|
|
|
from2: usize, // position de départ du deuxième pion (0-24)
|
2025-06-03 21:41:07 +02:00
|
|
|
},
|
2025-06-11 17:31:35 +02:00
|
|
|
// Marquer les points : à activer si support des écoles
|
|
|
|
|
// Mark,
|
2025-06-03 21:41:07 +02:00
|
|
|
}
|
|
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
impl TrictracAction {
|
|
|
|
|
/// Encode une action en index pour le réseau de neurones
|
|
|
|
|
pub fn to_action_index(&self) -> usize {
|
|
|
|
|
match self {
|
|
|
|
|
TrictracAction::Roll => 0,
|
2025-06-11 17:31:35 +02:00
|
|
|
TrictracAction::Go => 1,
|
2025-06-08 21:20:04 +02:00
|
|
|
TrictracAction::Move {
|
|
|
|
|
dice_order,
|
|
|
|
|
from1,
|
|
|
|
|
from2,
|
|
|
|
|
} => {
|
2025-06-01 20:00:15 +02:00
|
|
|
// Encoder les mouvements dans l'espace d'actions
|
2025-06-11 17:31:35 +02:00
|
|
|
// Indices 2+ pour les mouvements
|
|
|
|
|
// de 2 à 1251 (2 à 626 pour dé 1 en premier, 627 à 1251 pour dé 2 en premier)
|
|
|
|
|
let mut start = 2;
|
2025-06-08 21:20:04 +02:00
|
|
|
if !dice_order {
|
|
|
|
|
// 25 * 25 = 625
|
|
|
|
|
start += 625;
|
|
|
|
|
}
|
|
|
|
|
start + from1 * 25 + from2
|
2025-06-11 17:31:35 +02:00
|
|
|
} // TrictracAction::Mark => 1252,
|
2025-06-01 20:00:15 +02:00
|
|
|
}
|
|
|
|
|
}
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
/// Décode un index d'action en TrictracAction
|
|
|
|
|
pub fn from_action_index(index: usize) -> Option<TrictracAction> {
|
|
|
|
|
match index {
|
|
|
|
|
0 => Some(TrictracAction::Roll),
|
2025-06-11 17:31:35 +02:00
|
|
|
// 1252 => Some(TrictracAction::Mark),
|
|
|
|
|
1 => Some(TrictracAction::Go),
|
2025-06-08 21:20:04 +02:00
|
|
|
i if i >= 3 => {
|
|
|
|
|
let move_code = i - 3;
|
|
|
|
|
let (dice_order, from1, from2) = Self::decode_move(move_code);
|
|
|
|
|
Some(TrictracAction::Move {
|
|
|
|
|
dice_order,
|
|
|
|
|
from1,
|
|
|
|
|
from2,
|
|
|
|
|
})
|
2025-06-01 20:21:38 +02:00
|
|
|
}
|
2025-06-01 20:00:15 +02:00
|
|
|
_ => None,
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-08 21:20:04 +02:00
|
|
|
/// Décode un entier en paire de mouvements
|
|
|
|
|
fn decode_move(code: usize) -> (bool, usize, usize) {
|
|
|
|
|
let mut encoded = code;
|
|
|
|
|
let dice_order = code < 626;
|
|
|
|
|
if !dice_order {
|
|
|
|
|
encoded -= 625
|
|
|
|
|
}
|
|
|
|
|
let from1 = encoded / 25;
|
2025-07-26 09:37:54 +02:00
|
|
|
let from2 = 1 + encoded % 25;
|
2025-06-08 21:20:04 +02:00
|
|
|
(dice_order, from1, from2)
|
|
|
|
|
}
|
|
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
/// Retourne la taille de l'espace d'actions total
|
|
|
|
|
pub fn action_space_size() -> usize {
|
2025-06-11 17:31:35 +02:00
|
|
|
// 1 (Roll) + 1 (Go) + mouvements possibles
|
2025-06-08 21:20:04 +02:00
|
|
|
// Pour les mouvements : 2*25*25 = 1250 (choix du dé + position 0-24 pour chaque from)
|
2025-06-01 20:00:15 +02:00
|
|
|
// Mais on peut optimiser en limitant aux positions valides (1-24)
|
2025-06-11 17:31:35 +02:00
|
|
|
2 + (2 * 25 * 25) // = 1252
|
2025-06-01 20:00:15 +02:00
|
|
|
}
|
|
|
|
|
|
2025-06-08 21:20:04 +02:00
|
|
|
// pub fn to_game_event(&self, player_id: PlayerId, dice: Dice) -> GameEvent {
|
|
|
|
|
// match action {
|
|
|
|
|
// TrictracAction::Roll => Some(GameEvent::Roll { player_id }),
|
|
|
|
|
// TrictracAction::Mark => Some(GameEvent::Mark { player_id, points }),
|
|
|
|
|
// TrictracAction::Go => Some(GameEvent::Go { player_id }),
|
|
|
|
|
// TrictracAction::Move {
|
|
|
|
|
// dice_order,
|
|
|
|
|
// from1,
|
|
|
|
|
// from2,
|
|
|
|
|
// } => {
|
|
|
|
|
// // Effectuer un mouvement
|
|
|
|
|
// let checker_move1 = store::CheckerMove::new(move1.0, move1.1).unwrap_or_default();
|
|
|
|
|
// let checker_move2 = store::CheckerMove::new(move2.0, move2.1).unwrap_or_default();
|
|
|
|
|
//
|
|
|
|
|
// Some(GameEvent::Move {
|
|
|
|
|
// player_id: self.agent_player_id,
|
|
|
|
|
// moves: (checker_move1, checker_move2),
|
|
|
|
|
// })
|
|
|
|
|
// }
|
|
|
|
|
// };
|
|
|
|
|
// }
|
2025-06-01 20:00:15 +02:00
|
|
|
}
|
2025-05-26 20:44:35 +02:00
|
|
|
|
|
|
|
|
/// Configuration pour l'agent DQN
|
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
|
|
|
pub struct DqnConfig {
|
2025-05-30 20:32:00 +02:00
|
|
|
pub state_size: usize,
|
2025-05-26 20:44:35 +02:00
|
|
|
pub hidden_size: usize,
|
|
|
|
|
pub num_actions: usize,
|
|
|
|
|
pub learning_rate: f64,
|
|
|
|
|
pub gamma: f64,
|
|
|
|
|
pub epsilon: f64,
|
|
|
|
|
pub epsilon_decay: f64,
|
|
|
|
|
pub epsilon_min: f64,
|
|
|
|
|
pub replay_buffer_size: usize,
|
|
|
|
|
pub batch_size: usize,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Default for DqnConfig {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
Self {
|
2025-05-30 20:32:00 +02:00
|
|
|
state_size: 36,
|
2025-06-01 20:21:38 +02:00
|
|
|
hidden_size: 512, // Augmenter la taille pour gérer l'espace d'actions élargi
|
2025-06-01 20:00:15 +02:00
|
|
|
num_actions: TrictracAction::action_space_size(),
|
2025-05-26 20:44:35 +02:00
|
|
|
learning_rate: 0.001,
|
|
|
|
|
gamma: 0.99,
|
|
|
|
|
epsilon: 0.1,
|
|
|
|
|
epsilon_decay: 0.995,
|
|
|
|
|
epsilon_min: 0.01,
|
|
|
|
|
replay_buffer_size: 10000,
|
|
|
|
|
batch_size: 32,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Réseau de neurones DQN simplifié (matrice de poids basique)
|
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
|
|
|
pub struct SimpleNeuralNetwork {
|
|
|
|
|
pub weights1: Vec<Vec<f32>>,
|
|
|
|
|
pub biases1: Vec<f32>,
|
|
|
|
|
pub weights2: Vec<Vec<f32>>,
|
|
|
|
|
pub biases2: Vec<f32>,
|
|
|
|
|
pub weights3: Vec<Vec<f32>>,
|
|
|
|
|
pub biases3: Vec<f32>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl SimpleNeuralNetwork {
|
|
|
|
|
pub fn new(input_size: usize, hidden_size: usize, output_size: usize) -> Self {
|
|
|
|
|
use rand::{thread_rng, Rng};
|
|
|
|
|
let mut rng = thread_rng();
|
2025-05-30 20:32:00 +02:00
|
|
|
|
2025-05-26 20:44:35 +02:00
|
|
|
// Initialisation aléatoire des poids avec Xavier/Glorot
|
|
|
|
|
let scale1 = (2.0 / input_size as f32).sqrt();
|
|
|
|
|
let weights1 = (0..hidden_size)
|
2025-05-30 20:32:00 +02:00
|
|
|
.map(|_| {
|
|
|
|
|
(0..input_size)
|
|
|
|
|
.map(|_| rng.gen_range(-scale1..scale1))
|
|
|
|
|
.collect()
|
|
|
|
|
})
|
2025-05-26 20:44:35 +02:00
|
|
|
.collect();
|
|
|
|
|
let biases1 = vec![0.0; hidden_size];
|
2025-05-30 20:32:00 +02:00
|
|
|
|
2025-05-26 20:44:35 +02:00
|
|
|
let scale2 = (2.0 / hidden_size as f32).sqrt();
|
|
|
|
|
let weights2 = (0..hidden_size)
|
2025-05-30 20:32:00 +02:00
|
|
|
.map(|_| {
|
|
|
|
|
(0..hidden_size)
|
|
|
|
|
.map(|_| rng.gen_range(-scale2..scale2))
|
|
|
|
|
.collect()
|
|
|
|
|
})
|
2025-05-26 20:44:35 +02:00
|
|
|
.collect();
|
|
|
|
|
let biases2 = vec![0.0; hidden_size];
|
2025-05-30 20:32:00 +02:00
|
|
|
|
2025-05-26 20:44:35 +02:00
|
|
|
let scale3 = (2.0 / hidden_size as f32).sqrt();
|
|
|
|
|
let weights3 = (0..output_size)
|
2025-05-30 20:32:00 +02:00
|
|
|
.map(|_| {
|
|
|
|
|
(0..hidden_size)
|
|
|
|
|
.map(|_| rng.gen_range(-scale3..scale3))
|
|
|
|
|
.collect()
|
|
|
|
|
})
|
2025-05-26 20:44:35 +02:00
|
|
|
.collect();
|
|
|
|
|
let biases3 = vec![0.0; output_size];
|
|
|
|
|
|
|
|
|
|
Self {
|
|
|
|
|
weights1,
|
|
|
|
|
biases1,
|
|
|
|
|
weights2,
|
|
|
|
|
biases2,
|
|
|
|
|
weights3,
|
|
|
|
|
biases3,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn forward(&self, input: &[f32]) -> Vec<f32> {
|
|
|
|
|
// Première couche
|
|
|
|
|
let mut layer1: Vec<f32> = self.biases1.clone();
|
|
|
|
|
for (i, neuron_weights) in self.weights1.iter().enumerate() {
|
|
|
|
|
for (j, &weight) in neuron_weights.iter().enumerate() {
|
|
|
|
|
if j < input.len() {
|
|
|
|
|
layer1[i] += input[j] * weight;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
layer1[i] = layer1[i].max(0.0); // ReLU
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Deuxième couche
|
|
|
|
|
let mut layer2: Vec<f32> = self.biases2.clone();
|
|
|
|
|
for (i, neuron_weights) in self.weights2.iter().enumerate() {
|
|
|
|
|
for (j, &weight) in neuron_weights.iter().enumerate() {
|
|
|
|
|
if j < layer1.len() {
|
|
|
|
|
layer2[i] += layer1[j] * weight;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
layer2[i] = layer2[i].max(0.0); // ReLU
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Couche de sortie
|
|
|
|
|
let mut output: Vec<f32> = self.biases3.clone();
|
|
|
|
|
for (i, neuron_weights) in self.weights3.iter().enumerate() {
|
|
|
|
|
for (j, &weight) in neuron_weights.iter().enumerate() {
|
|
|
|
|
if j < layer2.len() {
|
|
|
|
|
output[i] += layer2[j] * weight;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_best_action(&self, input: &[f32]) -> usize {
|
|
|
|
|
let q_values = self.forward(input);
|
|
|
|
|
q_values
|
|
|
|
|
.iter()
|
|
|
|
|
.enumerate()
|
|
|
|
|
.max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
|
|
|
|
|
.map(|(index, _)| index)
|
|
|
|
|
.unwrap_or(0)
|
|
|
|
|
}
|
|
|
|
|
|
2025-05-30 20:32:00 +02:00
|
|
|
pub fn save<P: AsRef<std::path::Path>>(
|
|
|
|
|
&self,
|
|
|
|
|
path: P,
|
|
|
|
|
) -> Result<(), Box<dyn std::error::Error>> {
|
2025-05-26 20:44:35 +02:00
|
|
|
let data = serde_json::to_string_pretty(self)?;
|
|
|
|
|
std::fs::write(path, data)?;
|
|
|
|
|
Ok(())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn load<P: AsRef<std::path::Path>>(path: P) -> Result<Self, Box<dyn std::error::Error>> {
|
|
|
|
|
let data = std::fs::read_to_string(path)?;
|
|
|
|
|
let network = serde_json::from_str(&data)?;
|
|
|
|
|
Ok(network)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
/// Obtient les actions valides pour l'état de jeu actuel
|
|
|
|
|
pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
|
2025-06-01 20:21:38 +02:00
|
|
|
use crate::PointsRules;
|
2025-06-03 21:41:07 +02:00
|
|
|
use store::TurnStage;
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
let mut valid_actions = Vec::new();
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
let active_player_id = game_state.active_player_id;
|
|
|
|
|
let player_color = game_state.player_color_by_id(&active_player_id);
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
if let Some(color) = player_color {
|
|
|
|
|
match game_state.turn_stage {
|
|
|
|
|
TurnStage::RollDice | TurnStage::RollWaiting => {
|
|
|
|
|
valid_actions.push(TrictracAction::Roll);
|
|
|
|
|
}
|
|
|
|
|
TurnStage::MarkPoints | TurnStage::MarkAdvPoints => {
|
2025-06-11 17:31:35 +02:00
|
|
|
// valid_actions.push(TrictracAction::Mark);
|
2025-06-01 20:00:15 +02:00
|
|
|
}
|
|
|
|
|
TurnStage::HoldOrGoChoice => {
|
|
|
|
|
valid_actions.push(TrictracAction::Go);
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-11 17:31:35 +02:00
|
|
|
// Ajoute aussi les mouvements possibles
|
2025-06-03 21:41:07 +02:00
|
|
|
let rules = store::MoveRules::new(&color, &game_state.board, game_state.dice);
|
2025-06-01 20:00:15 +02:00
|
|
|
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-11 17:31:35 +02:00
|
|
|
// Modififier checker_moves_to_trictrac_action si on doit gérer Black
|
|
|
|
|
assert_eq!(color, store::Color::White);
|
2025-06-01 20:00:15 +02:00
|
|
|
for (move1, move2) in possible_moves {
|
2025-06-11 17:31:35 +02:00
|
|
|
valid_actions.push(checker_moves_to_trictrac_action(
|
|
|
|
|
&move1,
|
|
|
|
|
&move2,
|
|
|
|
|
&game_state.dice,
|
|
|
|
|
));
|
2025-06-01 20:00:15 +02:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
TurnStage::Move => {
|
2025-06-03 21:41:07 +02:00
|
|
|
let rules = store::MoveRules::new(&color, &game_state.board, game_state.dice);
|
2025-06-01 20:00:15 +02:00
|
|
|
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-11 17:31:35 +02:00
|
|
|
// Modififier checker_moves_to_trictrac_action si on doit gérer Black
|
|
|
|
|
assert_eq!(color, store::Color::White);
|
2025-06-01 20:00:15 +02:00
|
|
|
for (move1, move2) in possible_moves {
|
2025-06-11 17:31:35 +02:00
|
|
|
valid_actions.push(checker_moves_to_trictrac_action(
|
|
|
|
|
&move1,
|
|
|
|
|
&move2,
|
|
|
|
|
&game_state.dice,
|
|
|
|
|
));
|
2025-06-01 20:00:15 +02:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-06-01 20:21:38 +02:00
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
valid_actions
|
|
|
|
|
}
|
|
|
|
|
|
2025-06-11 17:31:35 +02:00
|
|
|
// Valid only for White player
|
|
|
|
|
fn checker_moves_to_trictrac_action(
|
|
|
|
|
move1: &CheckerMove,
|
|
|
|
|
move2: &CheckerMove,
|
|
|
|
|
dice: &Dice,
|
|
|
|
|
) -> TrictracAction {
|
|
|
|
|
let to1 = move1.get_to();
|
|
|
|
|
let to2 = move2.get_to();
|
|
|
|
|
let from1 = move1.get_from();
|
|
|
|
|
let from2 = move2.get_from();
|
|
|
|
|
|
|
|
|
|
let mut diff_move1 = if to1 > 0 {
|
|
|
|
|
// Mouvement sans sortie
|
|
|
|
|
to1 - from1
|
|
|
|
|
} else {
|
|
|
|
|
// sortie, on utilise la valeur du dé
|
|
|
|
|
if to2 > 0 {
|
|
|
|
|
// sortie pour le mouvement 1 uniquement
|
|
|
|
|
let dice2 = to2 - from2;
|
|
|
|
|
if dice2 == dice.values.0 as usize {
|
|
|
|
|
dice.values.1 as usize
|
|
|
|
|
} else {
|
|
|
|
|
dice.values.0 as usize
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
// double sortie
|
|
|
|
|
if from1 < from2 {
|
|
|
|
|
max(dice.values.0, dice.values.1) as usize
|
|
|
|
|
} else {
|
|
|
|
|
min(dice.values.0, dice.values.1) as usize
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// modification de diff_move1 si on est dans le cas d'un mouvement par puissance
|
|
|
|
|
let rest_field = 12;
|
|
|
|
|
if to1 == rest_field
|
|
|
|
|
&& to2 == rest_field
|
|
|
|
|
&& max(dice.values.0 as usize, dice.values.1 as usize) + min(from1, from2) != rest_field
|
|
|
|
|
{
|
|
|
|
|
// prise par puissance
|
|
|
|
|
diff_move1 += 1;
|
|
|
|
|
}
|
|
|
|
|
TrictracAction::Move {
|
|
|
|
|
dice_order: diff_move1 == dice.values.0 as usize,
|
|
|
|
|
from1: move1.get_from(),
|
|
|
|
|
from2: move2.get_from(),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
/// Retourne les indices des actions valides
|
|
|
|
|
pub fn get_valid_action_indices(game_state: &crate::GameState) -> Vec<usize> {
|
|
|
|
|
get_valid_actions(game_state)
|
|
|
|
|
.into_iter()
|
|
|
|
|
.map(|action| action.to_action_index())
|
|
|
|
|
.collect()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Sélectionne une action valide aléatoire
|
|
|
|
|
pub fn sample_valid_action(game_state: &crate::GameState) -> Option<TrictracAction> {
|
2025-06-01 20:21:38 +02:00
|
|
|
use rand::{seq::SliceRandom, thread_rng};
|
|
|
|
|
|
2025-06-01 20:00:15 +02:00
|
|
|
let valid_actions = get_valid_actions(game_state);
|
|
|
|
|
let mut rng = thread_rng();
|
|
|
|
|
valid_actions.choose(&mut rng).cloned()
|
|
|
|
|
}
|
2025-07-26 09:37:54 +02:00
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
mod tests {
|
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn to_action_index() {
|
|
|
|
|
let action = TrictracAction::Move {
|
|
|
|
|
dice_order: true,
|
|
|
|
|
from1: 3,
|
|
|
|
|
from2: 4,
|
|
|
|
|
};
|
|
|
|
|
let index = action.to_action_index();
|
|
|
|
|
assert_eq!(Some(action), TrictracAction::from_action_index(index));
|
|
|
|
|
assert_eq!(81, index);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn from_action_index() {
|
|
|
|
|
let action = TrictracAction::Move {
|
|
|
|
|
dice_order: true,
|
|
|
|
|
from1: 3,
|
|
|
|
|
from2: 4,
|
|
|
|
|
};
|
|
|
|
|
assert_eq!(Some(action), TrictracAction::from_action_index(81));
|
|
|
|
|
}
|
|
|
|
|
}
|