This commit is contained in:
Henri Bourcereau 2025-06-01 20:21:38 +02:00
parent f7eea0ed02
commit ebe98ca229
5 changed files with 73 additions and 66 deletions

View file

@ -2,7 +2,7 @@ use crate::{BotStrategy, CheckerMove, Color, GameState, PlayerId, PointsRules};
use std::path::Path;
use store::MoveRules;
use super::dqn_common::{DqnConfig, SimpleNeuralNetwork, TrictracAction, get_valid_actions, sample_valid_action};
use super::dqn_common::{SimpleNeuralNetwork, TrictracAction, get_valid_actions, sample_valid_action};
/// Stratégie DQN pour le bot - ne fait que charger et utiliser un modèle pré-entraîné
#[derive(Debug)]

View file

@ -1,5 +1,4 @@
use serde::{Deserialize, Serialize};
use crate::{CheckerMove};
/// Types d'actions possibles dans le jeu
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
@ -11,9 +10,9 @@ pub enum TrictracAction {
/// Continuer après avoir gagné un trou
Go,
/// Effectuer un mouvement de pions
Move {
move1: (usize, usize), // (from, to) pour le premier pion
move2: (usize, usize), // (from, to) pour le deuxième pion
Move {
move1: (usize, usize), // (from, to) pour le premier pion
move2: (usize, usize), // (from, to) pour le deuxième pion
},
}
@ -23,8 +22,8 @@ impl TrictracAction {
match self {
TrictracAction::Roll => 0,
TrictracAction::Mark { points } => {
1 + (*points as usize).min(12) // Indices 1-13 pour 0-12 points
},
1 + (*points as usize).min(12) // Indices 1-13 pour 0-12 points
}
TrictracAction::Go => 14,
TrictracAction::Move { move1, move2 } => {
// Encoder les mouvements dans l'espace d'actions
@ -33,22 +32,24 @@ impl TrictracAction {
}
}
}
/// Décode un index d'action en TrictracAction
pub fn from_action_index(index: usize) -> Option<TrictracAction> {
match index {
0 => Some(TrictracAction::Roll),
1..=13 => Some(TrictracAction::Mark { points: (index - 1) as u8 }),
1..=13 => Some(TrictracAction::Mark {
points: (index - 1) as u8,
}),
14 => Some(TrictracAction::Go),
i if i >= 15 => {
let move_code = i - 15;
let (move1, move2) = decode_move_pair(move_code);
Some(TrictracAction::Move { move1, move2 })
},
}
_ => None,
}
}
/// Retourne la taille de l'espace d'actions total
pub fn action_space_size() -> usize {
// 1 (Roll) + 13 (Mark 0-12) + 1 (Go) + mouvements possibles
@ -67,7 +68,7 @@ fn encode_move_pair(move1: (usize, usize), move2: (usize, usize)) -> usize {
let to1 = to1.min(24);
let from2 = from2.min(24);
let to2 = to2.min(24);
from1 * (25 * 25 * 25) + to1 * (25 * 25) + from2 * 25 + to2
}
@ -79,7 +80,7 @@ fn decode_move_pair(code: usize) -> ((usize, usize), (usize, usize)) {
let remainder = remainder % (25 * 25);
let from2 = remainder / 25;
let to2 = remainder % 25;
((from1, to1), (from2, to2))
}
@ -102,7 +103,7 @@ impl Default for DqnConfig {
fn default() -> Self {
Self {
state_size: 36,
hidden_size: 512, // Augmenter la taille pour gérer l'espace d'actions élargi
hidden_size: 512, // Augmenter la taille pour gérer l'espace d'actions élargi
num_actions: TrictracAction::action_space_size(),
learning_rate: 0.001,
gamma: 0.99,
@ -236,14 +237,14 @@ impl SimpleNeuralNetwork {
/// Obtient les actions valides pour l'état de jeu actuel
pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
use crate::{Color, PointsRules};
use crate::PointsRules;
use store::{MoveRules, TurnStage};
let mut valid_actions = Vec::new();
let active_player_id = game_state.active_player_id;
let player_color = game_state.player_color_by_id(&active_player_id);
if let Some(color) = player_color {
match game_state.turn_stage {
TurnStage::RollDice | TurnStage::RollWaiting => {
@ -255,7 +256,7 @@ pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
let dice_roll_count = player.dice_roll_count;
let points_rules = PointsRules::new(&color, &game_state.board, game_state.dice);
let (max_points, _) = points_rules.get_points(dice_roll_count);
// Permettre de marquer entre 0 et max_points
for points in 0..=max_points {
valid_actions.push(TrictracAction::Mark { points });
@ -264,11 +265,11 @@ pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
}
TurnStage::HoldOrGoChoice => {
valid_actions.push(TrictracAction::Go);
// Ajouter aussi les mouvements possibles
let rules = MoveRules::new(&color, &game_state.board, game_state.dice);
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
for (move1, move2) in possible_moves {
valid_actions.push(TrictracAction::Move {
move1: (move1.get_from(), move1.get_to()),
@ -279,7 +280,7 @@ pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
TurnStage::Move => {
let rules = MoveRules::new(&color, &game_state.board, game_state.dice);
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
for (move1, move2) in possible_moves {
valid_actions.push(TrictracAction::Move {
move1: (move1.get_from(), move1.get_to()),
@ -287,10 +288,9 @@ pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
});
}
}
_ => {}
}
}
valid_actions
}
@ -304,10 +304,9 @@ pub fn get_valid_action_indices(game_state: &crate::GameState) -> Vec<usize> {
/// Sélectionne une action valide aléatoire
pub fn sample_valid_action(game_state: &crate::GameState) -> Option<TrictracAction> {
use rand::{thread_rng, seq::SliceRandom};
use rand::{seq::SliceRandom, thread_rng};
let valid_actions = get_valid_actions(game_state);
let mut rng = thread_rng();
valid_actions.choose(&mut rng).cloned()
}

View file

@ -5,7 +5,7 @@ use serde::{Deserialize, Serialize};
use std::collections::VecDeque;
use store::{GameEvent, MoveRules, PointsRules, Stage, TurnStage};
use super::dqn_common::{DqnConfig, SimpleNeuralNetwork, TrictracAction, get_valid_actions, get_valid_action_indices, sample_valid_action};
use super::dqn_common::{get_valid_actions, DqnConfig, SimpleNeuralNetwork, TrictracAction};
/// Expérience pour le buffer de replay
#[derive(Debug, Clone, Serialize, Deserialize)]
@ -90,23 +90,26 @@ impl DqnAgent {
pub fn select_action(&mut self, game_state: &GameState, state: &[f32]) -> TrictracAction {
let valid_actions = get_valid_actions(game_state);
if valid_actions.is_empty() {
// Fallback si aucune action valide
return TrictracAction::Roll;
}
let mut rng = thread_rng();
if rng.gen::<f64>() < self.epsilon {
// Exploration : action valide aléatoire
valid_actions.choose(&mut rng).cloned().unwrap_or(TrictracAction::Roll)
valid_actions
.choose(&mut rng)
.cloned()
.unwrap_or(TrictracAction::Roll)
} else {
// Exploitation : meilleure action valide selon le modèle
let q_values = self.model.forward(state);
let mut best_action = &valid_actions[0];
let mut best_q_value = f32::NEG_INFINITY;
for action in &valid_actions {
let action_index = action.to_action_index();
if action_index < q_values.len() {
@ -117,7 +120,7 @@ impl DqnAgent {
}
}
}
best_action.clone()
}
}
@ -267,7 +270,7 @@ impl TrictracEnv {
// Effectuer un mouvement
let checker_move1 = store::CheckerMove::new(move1.0, move1.1).unwrap_or_default();
let checker_move2 = store::CheckerMove::new(move2.0, move2.1).unwrap_or_default();
reward += 0.2;
Some(GameEvent::Move {
player_id: self.agent_player_id,
@ -280,14 +283,16 @@ impl TrictracEnv {
if let Some(event) = event {
if self.game_state.validate(&event) {
self.game_state.consume(&event);
// Simuler le résultat des dés après un Roll
if matches!(action, TrictracAction::Roll) {
let mut rng = thread_rng();
let dice_values = (rng.gen_range(1..=6), rng.gen_range(1..=6));
let dice_event = GameEvent::RollResult {
player_id: self.agent_player_id,
dice: store::Dice { values: dice_values },
dice: store::Dice {
values: dice_values,
},
};
if self.game_state.validate(&dice_event) {
self.game_state.consume(&dice_event);
@ -393,8 +398,10 @@ impl DqnTrainer {
pub fn train_episode(&mut self) -> f32 {
let mut total_reward = 0.0;
let mut state = self.env.reset();
// let mut step_count = 0;
loop {
// step_count += 1;
let action = self.agent.select_action(&self.env.game_state, &state);
let (next_state, reward, done) = self.env.step(action.clone());
total_reward += reward;
@ -412,6 +419,9 @@ impl DqnTrainer {
if done {
break;
}
// if step_count % 100 == 0 {
// println!("{:?}", next_state);
// }
state = next_state;
}
@ -429,6 +439,7 @@ impl DqnTrainer {
for episode in 1..=episodes {
let reward = self.train_episode();
print!(".");
if episode % 100 == 0 {
println!(
"Épisode {}/{}: Récompense = {:.2}, Epsilon = {:.3}, Steps = {}",

View file

@ -1,11 +1,11 @@
use crate::{BotStrategy, CheckerMove, Color, GameState, PlayerId, PointsRules};
use store::MoveRules;
use std::process::Command;
use std::io::Write;
use serde::{Deserialize, Serialize};
use std::fs::File;
use std::io::Read;
use std::io::Write;
use std::path::Path;
use serde::{Serialize, Deserialize};
use std::process::Command;
use store::MoveRules;
#[derive(Debug)]
pub struct StableBaselines3Strategy {
@ -62,21 +62,21 @@ impl StableBaselines3Strategy {
fn get_state_as_json(&self) -> GameStateJson {
// Convertir l'état du jeu en un format compatible avec notre modèle Python
let mut board = vec![0; 24];
// Remplir les positions des pièces blanches (valeurs positives)
for (pos, count) in self.game.board.get_color_fields(Color::White) {
if pos < 24 {
board[pos] = count as i8;
}
}
// Remplir les positions des pièces noires (valeurs négatives)
for (pos, count) in self.game.board.get_color_fields(Color::Black) {
if pos < 24 {
board[pos] = -(count as i8);
}
}
// Convertir l'étape du tour en entier
let turn_stage = match self.game.turn_stage {
store::TurnStage::RollDice => 0,
@ -85,15 +85,14 @@ impl StableBaselines3Strategy {
store::TurnStage::HoldOrGoChoice => 3,
store::TurnStage::Move => 4,
store::TurnStage::MarkAdvPoints => 5,
_ => 0,
};
// Récupérer les points et trous des joueurs
let white_points = self.game.players.get(&1).map_or(0, |p| p.points);
let white_holes = self.game.players.get(&1).map_or(0, |p| p.holes);
let black_points = self.game.players.get(&2).map_or(0, |p| p.points);
let black_holes = self.game.players.get(&2).map_or(0, |p| p.holes);
// Créer l'objet JSON
GameStateJson {
board,
@ -111,12 +110,12 @@ impl StableBaselines3Strategy {
// Convertir l'état du jeu en JSON
let state_json = self.get_state_as_json();
let state_str = serde_json::to_string(&state_json).unwrap();
// Écrire l'état dans un fichier temporaire
let temp_input_path = "temp_state.json";
let mut file = File::create(temp_input_path).ok()?;
file.write_all(state_str.as_bytes()).ok()?;
// Exécuter le script Python pour faire une prédiction
let output_path = "temp_action.json";
let python_script = format!(
@ -164,32 +163,29 @@ with open("{}", "w") as f:
"#,
self.model_path, output_path
);
let temp_script_path = "temp_predict.py";
let mut script_file = File::create(temp_script_path).ok()?;
script_file.write_all(python_script.as_bytes()).ok()?;
// Exécuter le script Python
let status = Command::new("python")
.arg(temp_script_path)
.status()
.ok()?;
let status = Command::new("python").arg(temp_script_path).status().ok()?;
if !status.success() {
return None;
}
// Lire la prédiction
if Path::new(output_path).exists() {
let mut file = File::open(output_path).ok()?;
let mut contents = String::new();
file.read_to_string(&mut contents).ok()?;
// Nettoyer les fichiers temporaires
std::fs::remove_file(temp_input_path).ok();
std::fs::remove_file(temp_script_path).ok();
std::fs::remove_file(output_path).ok();
// Analyser la prédiction
let action: ActionJson = serde_json::from_str(&contents).ok()?;
Some(action)
@ -203,7 +199,7 @@ impl BotStrategy for StableBaselines3Strategy {
fn get_game(&self) -> &GameState {
&self.game
}
fn get_mut_game(&mut self) -> &mut GameState {
&mut self.game
}
@ -224,7 +220,7 @@ impl BotStrategy for StableBaselines3Strategy {
return self.game.dice.values.0 + self.game.dice.values.1;
}
}
// Fallback vers la méthode standard si la prédiction échoue
let dice_roll_count = self
.get_game()
@ -245,7 +241,7 @@ impl BotStrategy for StableBaselines3Strategy {
if let Some(action) = self.predict_action() {
return action.action_type == 2;
}
// Fallback vers la méthode standard si la prédiction échoue
true
}
@ -259,18 +255,19 @@ impl BotStrategy for StableBaselines3Strategy {
return (move1, move2);
}
}
// Fallback vers la méthode standard si la prédiction échoue
let rules = MoveRules::new(&self.color, &self.game.board, self.game.dice);
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
let choosen_move = *possible_moves
.first()
.unwrap_or(&(CheckerMove::default(), CheckerMove::default()));
if self.color == Color::White {
choosen_move
} else {
(choosen_move.0.mirror(), choosen_move.1.mirror())
}
}
}
}

View file

@ -174,7 +174,7 @@ impl GameState {
state.push(self.dice.values.0 as i8);
state.push(self.dice.values.1 as i8);
// points length=4 x2 joueurs = 8
// points, trous, bredouille, grande bredouille length=4 x2 joueurs = 8
let white_player: Vec<i8> = self
.get_white_player()
.unwrap()