trictrac/bot/src/strategy/dqn_common.rs

182 lines
5.5 KiB
Rust
Raw Normal View History

2025-05-26 20:44:35 +02:00
use serde::{Deserialize, Serialize};
/// Configuration pour l'agent DQN
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DqnConfig {
pub input_size: usize,
pub hidden_size: usize,
pub num_actions: usize,
pub learning_rate: f64,
pub gamma: f64,
pub epsilon: f64,
pub epsilon_decay: f64,
pub epsilon_min: f64,
pub replay_buffer_size: usize,
pub batch_size: usize,
}
impl Default for DqnConfig {
fn default() -> Self {
Self {
input_size: 32,
hidden_size: 256,
num_actions: 3,
learning_rate: 0.001,
gamma: 0.99,
epsilon: 0.1,
epsilon_decay: 0.995,
epsilon_min: 0.01,
replay_buffer_size: 10000,
batch_size: 32,
}
}
}
/// Réseau de neurones DQN simplifié (matrice de poids basique)
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SimpleNeuralNetwork {
pub weights1: Vec<Vec<f32>>,
pub biases1: Vec<f32>,
pub weights2: Vec<Vec<f32>>,
pub biases2: Vec<f32>,
pub weights3: Vec<Vec<f32>>,
pub biases3: Vec<f32>,
}
impl SimpleNeuralNetwork {
pub fn new(input_size: usize, hidden_size: usize, output_size: usize) -> Self {
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
// Initialisation aléatoire des poids avec Xavier/Glorot
let scale1 = (2.0 / input_size as f32).sqrt();
let weights1 = (0..hidden_size)
.map(|_| (0..input_size).map(|_| rng.gen_range(-scale1..scale1)).collect())
.collect();
let biases1 = vec![0.0; hidden_size];
let scale2 = (2.0 / hidden_size as f32).sqrt();
let weights2 = (0..hidden_size)
.map(|_| (0..hidden_size).map(|_| rng.gen_range(-scale2..scale2)).collect())
.collect();
let biases2 = vec![0.0; hidden_size];
let scale3 = (2.0 / hidden_size as f32).sqrt();
let weights3 = (0..output_size)
.map(|_| (0..hidden_size).map(|_| rng.gen_range(-scale3..scale3)).collect())
.collect();
let biases3 = vec![0.0; output_size];
Self {
weights1,
biases1,
weights2,
biases2,
weights3,
biases3,
}
}
pub fn forward(&self, input: &[f32]) -> Vec<f32> {
// Première couche
let mut layer1: Vec<f32> = self.biases1.clone();
for (i, neuron_weights) in self.weights1.iter().enumerate() {
for (j, &weight) in neuron_weights.iter().enumerate() {
if j < input.len() {
layer1[i] += input[j] * weight;
}
}
layer1[i] = layer1[i].max(0.0); // ReLU
}
// Deuxième couche
let mut layer2: Vec<f32> = self.biases2.clone();
for (i, neuron_weights) in self.weights2.iter().enumerate() {
for (j, &weight) in neuron_weights.iter().enumerate() {
if j < layer1.len() {
layer2[i] += layer1[j] * weight;
}
}
layer2[i] = layer2[i].max(0.0); // ReLU
}
// Couche de sortie
let mut output: Vec<f32> = self.biases3.clone();
for (i, neuron_weights) in self.weights3.iter().enumerate() {
for (j, &weight) in neuron_weights.iter().enumerate() {
if j < layer2.len() {
output[i] += layer2[j] * weight;
}
}
}
output
}
pub fn get_best_action(&self, input: &[f32]) -> usize {
let q_values = self.forward(input);
q_values
.iter()
.enumerate()
.max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
.map(|(index, _)| index)
.unwrap_or(0)
}
pub fn save<P: AsRef<std::path::Path>>(&self, path: P) -> Result<(), Box<dyn std::error::Error>> {
let data = serde_json::to_string_pretty(self)?;
std::fs::write(path, data)?;
Ok(())
}
pub fn load<P: AsRef<std::path::Path>>(path: P) -> Result<Self, Box<dyn std::error::Error>> {
let data = std::fs::read_to_string(path)?;
let network = serde_json::from_str(&data)?;
Ok(network)
}
}
/// Convertit l'état du jeu en vecteur d'entrée pour le réseau de neurones
pub fn game_state_to_vector(game_state: &crate::GameState) -> Vec<f32> {
use crate::Color;
let mut state = Vec::with_capacity(32);
// Plateau (24 cases)
let white_positions = game_state.board.get_color_fields(Color::White);
let black_positions = game_state.board.get_color_fields(Color::Black);
let mut board = vec![0.0; 24];
for (pos, count) in white_positions {
if pos < 24 {
board[pos] = count as f32;
}
}
for (pos, count) in black_positions {
if pos < 24 {
board[pos] = -(count as f32);
}
}
state.extend(board);
// Informations supplémentaires limitées pour respecter input_size = 32
state.push(game_state.active_player_id as f32);
state.push(game_state.dice.values.0 as f32);
state.push(game_state.dice.values.1 as f32);
// Points et trous des joueurs
if let Some(white_player) = game_state.get_white_player() {
state.push(white_player.points as f32);
state.push(white_player.holes as f32);
} else {
state.extend(vec![0.0, 0.0]);
}
// Assurer que la taille est exactement input_size
state.truncate(32);
while state.len() < 32 {
state.push(0.0);
}
state
}