trictrac/bot/src/strategy/dqn_common.rs

314 lines
10 KiB
Rust
Raw Normal View History

2025-05-26 20:44:35 +02:00
use serde::{Deserialize, Serialize};
2025-06-01 20:00:15 +02:00
use crate::{CheckerMove};
/// Types d'actions possibles dans le jeu
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub enum TrictracAction {
/// Lancer les dés
Roll,
/// Marquer des points
Mark { points: u8 },
/// Continuer après avoir gagné un trou
Go,
/// Effectuer un mouvement de pions
Move {
move1: (usize, usize), // (from, to) pour le premier pion
move2: (usize, usize), // (from, to) pour le deuxième pion
},
}
impl TrictracAction {
/// Encode une action en index pour le réseau de neurones
pub fn to_action_index(&self) -> usize {
match self {
TrictracAction::Roll => 0,
TrictracAction::Mark { points } => {
1 + (*points as usize).min(12) // Indices 1-13 pour 0-12 points
},
TrictracAction::Go => 14,
TrictracAction::Move { move1, move2 } => {
// Encoder les mouvements dans l'espace d'actions
// Indices 15+ pour les mouvements
15 + encode_move_pair(*move1, *move2)
}
}
}
/// Décode un index d'action en TrictracAction
pub fn from_action_index(index: usize) -> Option<TrictracAction> {
match index {
0 => Some(TrictracAction::Roll),
1..=13 => Some(TrictracAction::Mark { points: (index - 1) as u8 }),
14 => Some(TrictracAction::Go),
i if i >= 15 => {
let move_code = i - 15;
let (move1, move2) = decode_move_pair(move_code);
Some(TrictracAction::Move { move1, move2 })
},
_ => None,
}
}
/// Retourne la taille de l'espace d'actions total
pub fn action_space_size() -> usize {
// 1 (Roll) + 13 (Mark 0-12) + 1 (Go) + mouvements possibles
// Pour les mouvements : 25*25*25*25 = 390625 (position 0-24 pour chaque from/to)
// Mais on peut optimiser en limitant aux positions valides (1-24)
15 + (24 * 24 * 24 * 24) // = 331791
}
}
/// Encode une paire de mouvements en un seul entier
fn encode_move_pair(move1: (usize, usize), move2: (usize, usize)) -> usize {
let (from1, to1) = move1;
let (from2, to2) = move2;
// Assurer que les positions sont dans la plage 0-24
let from1 = from1.min(24);
let to1 = to1.min(24);
let from2 = from2.min(24);
let to2 = to2.min(24);
from1 * (25 * 25 * 25) + to1 * (25 * 25) + from2 * 25 + to2
}
/// Décode un entier en paire de mouvements
fn decode_move_pair(code: usize) -> ((usize, usize), (usize, usize)) {
let from1 = code / (25 * 25 * 25);
let remainder = code % (25 * 25 * 25);
let to1 = remainder / (25 * 25);
let remainder = remainder % (25 * 25);
let from2 = remainder / 25;
let to2 = remainder % 25;
((from1, to1), (from2, to2))
}
2025-05-26 20:44:35 +02:00
/// Configuration pour l'agent DQN
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DqnConfig {
2025-05-30 20:32:00 +02:00
pub state_size: usize,
2025-05-26 20:44:35 +02:00
pub hidden_size: usize,
pub num_actions: usize,
pub learning_rate: f64,
pub gamma: f64,
pub epsilon: f64,
pub epsilon_decay: f64,
pub epsilon_min: f64,
pub replay_buffer_size: usize,
pub batch_size: usize,
}
impl Default for DqnConfig {
fn default() -> Self {
Self {
2025-05-30 20:32:00 +02:00
state_size: 36,
2025-06-01 20:00:15 +02:00
hidden_size: 512, // Augmenter la taille pour gérer l'espace d'actions élargi
num_actions: TrictracAction::action_space_size(),
2025-05-26 20:44:35 +02:00
learning_rate: 0.001,
gamma: 0.99,
epsilon: 0.1,
epsilon_decay: 0.995,
epsilon_min: 0.01,
replay_buffer_size: 10000,
batch_size: 32,
}
}
}
/// Réseau de neurones DQN simplifié (matrice de poids basique)
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SimpleNeuralNetwork {
pub weights1: Vec<Vec<f32>>,
pub biases1: Vec<f32>,
pub weights2: Vec<Vec<f32>>,
pub biases2: Vec<f32>,
pub weights3: Vec<Vec<f32>>,
pub biases3: Vec<f32>,
}
impl SimpleNeuralNetwork {
pub fn new(input_size: usize, hidden_size: usize, output_size: usize) -> Self {
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
2025-05-30 20:32:00 +02:00
2025-05-26 20:44:35 +02:00
// Initialisation aléatoire des poids avec Xavier/Glorot
let scale1 = (2.0 / input_size as f32).sqrt();
let weights1 = (0..hidden_size)
2025-05-30 20:32:00 +02:00
.map(|_| {
(0..input_size)
.map(|_| rng.gen_range(-scale1..scale1))
.collect()
})
2025-05-26 20:44:35 +02:00
.collect();
let biases1 = vec![0.0; hidden_size];
2025-05-30 20:32:00 +02:00
2025-05-26 20:44:35 +02:00
let scale2 = (2.0 / hidden_size as f32).sqrt();
let weights2 = (0..hidden_size)
2025-05-30 20:32:00 +02:00
.map(|_| {
(0..hidden_size)
.map(|_| rng.gen_range(-scale2..scale2))
.collect()
})
2025-05-26 20:44:35 +02:00
.collect();
let biases2 = vec![0.0; hidden_size];
2025-05-30 20:32:00 +02:00
2025-05-26 20:44:35 +02:00
let scale3 = (2.0 / hidden_size as f32).sqrt();
let weights3 = (0..output_size)
2025-05-30 20:32:00 +02:00
.map(|_| {
(0..hidden_size)
.map(|_| rng.gen_range(-scale3..scale3))
.collect()
})
2025-05-26 20:44:35 +02:00
.collect();
let biases3 = vec![0.0; output_size];
Self {
weights1,
biases1,
weights2,
biases2,
weights3,
biases3,
}
}
pub fn forward(&self, input: &[f32]) -> Vec<f32> {
// Première couche
let mut layer1: Vec<f32> = self.biases1.clone();
for (i, neuron_weights) in self.weights1.iter().enumerate() {
for (j, &weight) in neuron_weights.iter().enumerate() {
if j < input.len() {
layer1[i] += input[j] * weight;
}
}
layer1[i] = layer1[i].max(0.0); // ReLU
}
// Deuxième couche
let mut layer2: Vec<f32> = self.biases2.clone();
for (i, neuron_weights) in self.weights2.iter().enumerate() {
for (j, &weight) in neuron_weights.iter().enumerate() {
if j < layer1.len() {
layer2[i] += layer1[j] * weight;
}
}
layer2[i] = layer2[i].max(0.0); // ReLU
}
// Couche de sortie
let mut output: Vec<f32> = self.biases3.clone();
for (i, neuron_weights) in self.weights3.iter().enumerate() {
for (j, &weight) in neuron_weights.iter().enumerate() {
if j < layer2.len() {
output[i] += layer2[j] * weight;
}
}
}
output
}
pub fn get_best_action(&self, input: &[f32]) -> usize {
let q_values = self.forward(input);
q_values
.iter()
.enumerate()
.max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
.map(|(index, _)| index)
.unwrap_or(0)
}
2025-05-30 20:32:00 +02:00
pub fn save<P: AsRef<std::path::Path>>(
&self,
path: P,
) -> Result<(), Box<dyn std::error::Error>> {
2025-05-26 20:44:35 +02:00
let data = serde_json::to_string_pretty(self)?;
std::fs::write(path, data)?;
Ok(())
}
pub fn load<P: AsRef<std::path::Path>>(path: P) -> Result<Self, Box<dyn std::error::Error>> {
let data = std::fs::read_to_string(path)?;
let network = serde_json::from_str(&data)?;
Ok(network)
}
}
2025-06-01 20:00:15 +02:00
/// Obtient les actions valides pour l'état de jeu actuel
pub fn get_valid_actions(game_state: &crate::GameState) -> Vec<TrictracAction> {
use crate::{Color, PointsRules};
use store::{MoveRules, TurnStage};
let mut valid_actions = Vec::new();
let active_player_id = game_state.active_player_id;
let player_color = game_state.player_color_by_id(&active_player_id);
if let Some(color) = player_color {
match game_state.turn_stage {
TurnStage::RollDice | TurnStage::RollWaiting => {
valid_actions.push(TrictracAction::Roll);
}
TurnStage::MarkPoints | TurnStage::MarkAdvPoints => {
// Calculer les points possibles
if let Some(player) = game_state.players.get(&active_player_id) {
let dice_roll_count = player.dice_roll_count;
let points_rules = PointsRules::new(&color, &game_state.board, game_state.dice);
let (max_points, _) = points_rules.get_points(dice_roll_count);
// Permettre de marquer entre 0 et max_points
for points in 0..=max_points {
valid_actions.push(TrictracAction::Mark { points });
}
}
}
TurnStage::HoldOrGoChoice => {
valid_actions.push(TrictracAction::Go);
// Ajouter aussi les mouvements possibles
let rules = MoveRules::new(&color, &game_state.board, game_state.dice);
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
for (move1, move2) in possible_moves {
valid_actions.push(TrictracAction::Move {
move1: (move1.get_from(), move1.get_to()),
move2: (move2.get_from(), move2.get_to()),
});
}
}
TurnStage::Move => {
let rules = MoveRules::new(&color, &game_state.board, game_state.dice);
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
for (move1, move2) in possible_moves {
valid_actions.push(TrictracAction::Move {
move1: (move1.get_from(), move1.get_to()),
move2: (move2.get_from(), move2.get_to()),
});
}
}
_ => {}
}
}
valid_actions
}
/// Retourne les indices des actions valides
pub fn get_valid_action_indices(game_state: &crate::GameState) -> Vec<usize> {
get_valid_actions(game_state)
.into_iter()
.map(|action| action.to_action_index())
.collect()
}
/// Sélectionne une action valide aléatoire
pub fn sample_valid_action(game_state: &crate::GameState) -> Option<TrictracAction> {
use rand::{thread_rng, seq::SliceRandom};
let valid_actions = get_valid_actions(game_state);
let mut rng = thread_rng();
valid_actions.choose(&mut rng).cloned()
}