trictrac/bot/src/strategy/burn_dqn_agent.rs

294 lines
9.3 KiB
Rust

use burn::{
backend::{ndarray::NdArrayDevice, Autodiff, NdArray},
nn::{Linear, LinearConfig, loss::MseLoss},
module::Module,
tensor::Tensor,
optim::{AdamConfig, Optimizer},
record::{CompactRecorder, Recorder},
};
use rand::Rng;
use serde::{Deserialize, Serialize};
use std::collections::VecDeque;
/// Backend utilisé pour l'entraînement (Autodiff + NdArray)
pub type MyBackend = Autodiff<NdArray>;
/// Backend utilisé pour l'inférence (NdArray)
pub type InferenceBackend = NdArray;
pub type MyDevice = NdArrayDevice;
/// Réseau de neurones pour DQN
#[derive(Module, Debug)]
pub struct DqnNetwork<B: burn::prelude::Backend> {
fc1: Linear<B>,
fc2: Linear<B>,
fc3: Linear<B>,
}
impl<B: burn::prelude::Backend> DqnNetwork<B> {
/// Crée un nouveau réseau DQN
pub fn new(input_size: usize, hidden_size: usize, output_size: usize, device: &B::Device) -> Self {
let fc1 = LinearConfig::new(input_size, hidden_size).init(device);
let fc2 = LinearConfig::new(hidden_size, hidden_size).init(device);
let fc3 = LinearConfig::new(hidden_size, output_size).init(device);
Self { fc1, fc2, fc3 }
}
/// Forward pass du réseau
pub fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
let x = self.fc1.forward(input);
let x = burn::tensor::activation::relu(x);
let x = self.fc2.forward(x);
let x = burn::tensor::activation::relu(x);
self.fc3.forward(x)
}
}
/// Configuration pour l'entraînement DQN
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DqnConfig {
pub state_size: usize,
pub action_size: usize,
pub hidden_size: usize,
pub learning_rate: f64,
pub gamma: f32,
pub epsilon: f32,
pub epsilon_decay: f32,
pub epsilon_min: f32,
pub replay_buffer_size: usize,
pub batch_size: usize,
pub target_update_freq: usize,
}
impl Default for DqnConfig {
fn default() -> Self {
Self {
state_size: 36,
action_size: 1000,
hidden_size: 256,
learning_rate: 0.001,
gamma: 0.99,
epsilon: 1.0,
epsilon_decay: 0.995,
epsilon_min: 0.01,
replay_buffer_size: 10000,
batch_size: 32,
target_update_freq: 100,
}
}
}
/// Experience pour le replay buffer
#[derive(Debug, Clone)]
pub struct Experience {
pub state: Vec<f32>,
pub action: usize,
pub reward: f32,
pub next_state: Option<Vec<f32>>,
pub done: bool,
}
/// Agent DQN utilisant Burn
pub struct BurnDqnAgent {
config: DqnConfig,
device: MyDevice,
q_network: DqnNetwork<MyBackend>,
target_network: DqnNetwork<MyBackend>,
optimizer: burn::optim::Adam<MyBackend>,
replay_buffer: VecDeque<Experience>,
epsilon: f32,
step_count: usize,
}
impl BurnDqnAgent {
/// Crée un nouvel agent DQN
pub fn new(config: DqnConfig) -> Self {
let device = MyDevice::default();
let q_network = DqnNetwork::new(
config.state_size,
config.hidden_size,
config.action_size,
&device,
);
let target_network = DqnNetwork::new(
config.state_size,
config.hidden_size,
config.action_size,
&device,
);
let optimizer = AdamConfig::new().init();
Self {
config: config.clone(),
device,
q_network,
target_network,
optimizer,
replay_buffer: VecDeque::new(),
epsilon: config.epsilon,
step_count: 0,
}
}
/// Sélectionne une action avec epsilon-greedy
pub fn select_action(&mut self, state: &[f32], valid_actions: &[usize]) -> usize {
if valid_actions.is_empty() {
return 0;
}
// Exploration epsilon-greedy
if rand::random::<f32>() < self.epsilon {
let random_index = rand::random::<usize>() % valid_actions.len();
return valid_actions[random_index];
}
// Exploitation : choisir la meilleure action selon le Q-network
let state_tensor = Tensor::<MyBackend, 2>::from_floats([state], &self.device);
let q_values = self.q_network.forward(state_tensor);
// Convertir en vecteur pour traitement
let q_data = q_values.into_data().convert::<f32>().value;
// Trouver la meilleure action parmi les actions valides
let mut best_action = valid_actions[0];
let mut best_q_value = f32::NEG_INFINITY;
for &action in valid_actions {
if action < q_data.len() && q_data[action] > best_q_value {
best_q_value = q_data[action];
best_action = action;
}
}
best_action
}
/// Ajoute une expérience au replay buffer
pub fn add_experience(&mut self, experience: Experience) {
if self.replay_buffer.len() >= self.config.replay_buffer_size {
self.replay_buffer.pop_front();
}
self.replay_buffer.push_back(experience);
}
/// Entraîne le réseau sur un batch d'expériences
pub fn train_step(&mut self) -> Option<f32> {
if self.replay_buffer.len() < self.config.batch_size {
return None;
}
// Échantillonner un batch d'expériences
let batch = self.sample_batch();
// Préparer les tenseurs d'état
let states: Vec<&[f32]> = batch.iter().map(|exp| exp.state.as_slice()).collect();
let state_tensor = Tensor::<MyBackend, 2>::from_floats(states, &self.device);
// Calculer les Q-values actuelles
let current_q_values = self.q_network.forward(state_tensor);
// Pour l'instant, version simplifiée sans calcul de target
let target_q_values = current_q_values.clone();
// Calculer la loss MSE
let loss = MseLoss::new().forward(
current_q_values,
target_q_values,
burn::nn::loss::Reduction::Mean
);
// Backpropagation (version simplifiée)
let grads = loss.backward();
self.q_network = self.optimizer.step(self.config.learning_rate, self.q_network, grads);
// Mise à jour du réseau cible
self.step_count += 1;
if self.step_count % self.config.target_update_freq == 0 {
self.update_target_network();
}
// Décroissance d'epsilon
if self.epsilon > self.config.epsilon_min {
self.epsilon *= self.config.epsilon_decay;
}
Some(loss.into_scalar())
}
/// Échantillonne un batch d'expériences du replay buffer
fn sample_batch(&self) -> Vec<Experience> {
let mut batch = Vec::new();
let buffer_size = self.replay_buffer.len();
for _ in 0..self.config.batch_size.min(buffer_size) {
let index = rand::random::<usize>() % buffer_size;
if let Some(exp) = self.replay_buffer.get(index) {
batch.push(exp.clone());
}
}
batch
}
/// Met à jour le réseau cible avec les poids du réseau principal
fn update_target_network(&mut self) {
// Copie simple des poids
self.target_network = self.q_network.clone();
}
/// Sauvegarde le modèle
pub fn save_model(&self, path: &str) -> Result<(), Box<dyn std::error::Error>> {
// Sauvegarder la configuration
let config_path = format!("{}_config.json", path);
let config_json = serde_json::to_string_pretty(&self.config)?;
std::fs::write(config_path, config_json)?;
// Sauvegarder le réseau pour l'inférence (conversion vers NdArray backend)
let inference_network = self.q_network.clone().into_record();
let recorder = CompactRecorder::new();
let model_path = format!("{}_model.burn", path);
recorder.record(inference_network, model_path.into())?;
println!("Modèle sauvegardé : {}", path);
Ok(())
}
/// Charge un modèle pour l'inférence
pub fn load_model_for_inference(path: &str) -> Result<(DqnNetwork<InferenceBackend>, DqnConfig), Box<dyn std::error::Error>> {
// Charger la configuration
let config_path = format!("{}_config.json", path);
let config_json = std::fs::read_to_string(config_path)?;
let config: DqnConfig = serde_json::from_str(&config_json)?;
// Créer le réseau pour l'inférence
let device = NdArrayDevice::default();
let network = DqnNetwork::<InferenceBackend>::new(
config.state_size,
config.hidden_size,
config.action_size,
&device,
);
// Charger les poids
let model_path = format!("{}_model.burn", path);
let recorder = CompactRecorder::new();
let record = recorder.load(model_path.into(), &device)?;
let network = network.load_record(record);
Ok((network, config))
}
/// Retourne l'epsilon actuel
pub fn get_epsilon(&self) -> f32 {
self.epsilon
}
/// Retourne la taille du replay buffer
pub fn get_buffer_size(&self) -> usize {
self.replay_buffer.len()
}
}