trictrac/bot/src/dqn_simple/dqn_trainer.rs

495 lines
15 KiB
Rust

use crate::{CheckerMove, Color, GameState, PlayerId};
use rand::prelude::SliceRandom;
use rand::{thread_rng, Rng};
use serde::{Deserialize, Serialize};
use std::collections::VecDeque;
use store::{GameEvent, MoveRules, PointsRules, Stage, TurnStage};
use super::dqn_model::{DqnConfig, SimpleNeuralNetwork};
use crate::training_common_big::{get_valid_actions, TrictracAction};
/// Expérience pour le buffer de replay
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Experience {
pub state: Vec<f32>,
pub action: TrictracAction,
pub reward: f32,
pub next_state: Vec<f32>,
pub done: bool,
}
/// Buffer de replay pour stocker les expériences
#[derive(Debug)]
pub struct ReplayBuffer {
buffer: VecDeque<Experience>,
capacity: usize,
}
impl ReplayBuffer {
pub fn new(capacity: usize) -> Self {
Self {
buffer: VecDeque::with_capacity(capacity),
capacity,
}
}
pub fn push(&mut self, experience: Experience) {
if self.buffer.len() >= self.capacity {
self.buffer.pop_front();
}
self.buffer.push_back(experience);
}
pub fn sample(&self, batch_size: usize) -> Vec<Experience> {
let mut rng = thread_rng();
let len = self.buffer.len();
if len < batch_size {
return self.buffer.iter().cloned().collect();
}
let mut batch = Vec::with_capacity(batch_size);
for _ in 0..batch_size {
let idx = rng.gen_range(0..len);
batch.push(self.buffer[idx].clone());
}
batch
}
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
pub fn len(&self) -> usize {
self.buffer.len()
}
}
/// Agent DQN pour l'apprentissage par renforcement
#[derive(Debug)]
pub struct DqnAgent {
config: DqnConfig,
model: SimpleNeuralNetwork,
target_model: SimpleNeuralNetwork,
replay_buffer: ReplayBuffer,
epsilon: f64,
step_count: usize,
}
impl DqnAgent {
pub fn new(config: DqnConfig) -> Self {
let model =
SimpleNeuralNetwork::new(config.state_size, config.hidden_size, config.num_actions);
let target_model = model.clone();
let replay_buffer = ReplayBuffer::new(config.replay_buffer_size);
let epsilon = config.epsilon;
Self {
config,
model,
target_model,
replay_buffer,
epsilon,
step_count: 0,
}
}
pub fn select_action(&mut self, game_state: &GameState, state: &[f32]) -> TrictracAction {
let valid_actions = get_valid_actions(game_state);
if valid_actions.is_empty() {
// Fallback si aucune action valide
return TrictracAction::Roll;
}
let mut rng = thread_rng();
if rng.gen::<f64>() < self.epsilon {
// Exploration : action valide aléatoire
valid_actions
.choose(&mut rng)
.cloned()
.unwrap_or(TrictracAction::Roll)
} else {
// Exploitation : meilleure action valide selon le modèle
let q_values = self.model.forward(state);
let mut best_action = &valid_actions[0];
let mut best_q_value = f32::NEG_INFINITY;
for action in &valid_actions {
let action_index = action.to_action_index();
if action_index < q_values.len() {
let q_value = q_values[action_index];
if q_value > best_q_value {
best_q_value = q_value;
best_action = action;
}
}
}
best_action.clone()
}
}
pub fn store_experience(&mut self, experience: Experience) {
self.replay_buffer.push(experience);
}
pub fn train(&mut self) {
if self.replay_buffer.len() < self.config.batch_size {
return;
}
// Pour l'instant, on simule l'entraînement en mettant à jour epsilon
// Dans une implémentation complète, ici on ferait la backpropagation
self.epsilon = (self.epsilon * self.config.epsilon_decay).max(self.config.epsilon_min);
self.step_count += 1;
// Mise à jour du target model tous les 100 steps
if self.step_count % 100 == 0 {
self.target_model = self.model.clone();
}
}
pub fn save_model<P: AsRef<std::path::Path>>(
&self,
path: P,
) -> Result<(), Box<dyn std::error::Error>> {
self.model.save(path)
}
pub fn get_epsilon(&self) -> f64 {
self.epsilon
}
pub fn get_step_count(&self) -> usize {
self.step_count
}
}
/// Environnement Trictrac pour l'entraînement
#[derive(Debug)]
pub struct TrictracEnv {
pub game_state: GameState,
pub agent_player_id: PlayerId,
pub opponent_player_id: PlayerId,
pub agent_color: Color,
pub max_steps: usize,
pub current_step: usize,
}
impl Default for TrictracEnv {
fn default() -> Self {
let mut game_state = GameState::new(false);
game_state.init_player("agent");
game_state.init_player("opponent");
Self {
game_state,
agent_player_id: 1,
opponent_player_id: 2,
agent_color: Color::White,
max_steps: 1000,
current_step: 0,
}
}
}
impl TrictracEnv {
pub fn reset(&mut self) -> Vec<f32> {
self.game_state = GameState::new(false);
self.game_state.init_player("agent");
self.game_state.init_player("opponent");
// Commencer la partie
self.game_state.consume(&GameEvent::BeginGame {
goes_first: self.agent_player_id,
});
self.current_step = 0;
self.game_state.to_vec_float()
}
pub fn step(&mut self, action: TrictracAction) -> (Vec<f32>, f32, bool) {
let mut reward = 0.0;
// Appliquer l'action de l'agent
if self.game_state.active_player_id == self.agent_player_id {
reward += self.apply_agent_action(action);
}
// Faire jouer l'adversaire (stratégie simple)
while self.game_state.active_player_id == self.opponent_player_id
&& self.game_state.stage != Stage::Ended
{
reward += self.play_opponent_turn();
}
// Vérifier si la partie est terminée
let done = self.game_state.stage == Stage::Ended
|| self.game_state.determine_winner().is_some()
|| self.current_step >= self.max_steps;
// Récompense finale si la partie est terminée
if done {
if let Some(winner) = self.game_state.determine_winner() {
if winner == self.agent_player_id {
reward += 100.0; // Bonus pour gagner
} else {
reward -= 50.0; // Pénalité pour perdre
}
}
}
self.current_step += 1;
let next_state = self.game_state.to_vec_float();
(next_state, reward, done)
}
fn apply_agent_action(&mut self, action: TrictracAction) -> f32 {
let mut reward = 0.0;
let event = match action {
TrictracAction::Roll => {
// Lancer les dés
reward += 0.1;
Some(GameEvent::Roll {
player_id: self.agent_player_id,
})
}
// TrictracAction::Mark => {
// // Marquer des points
// let points = self.game_state.
// reward += 0.1 * points as f32;
// Some(GameEvent::Mark {
// player_id: self.agent_player_id,
// points,
// })
// }
TrictracAction::Go => {
// Continuer après avoir gagné un trou
reward += 0.2;
Some(GameEvent::Go {
player_id: self.agent_player_id,
})
}
TrictracAction::Move {
dice_order,
from1,
from2,
} => {
// Effectuer un mouvement
let (dice1, dice2) = if dice_order {
(self.game_state.dice.values.0, self.game_state.dice.values.1)
} else {
(self.game_state.dice.values.1, self.game_state.dice.values.0)
};
let mut to1 = from1 + dice1 as usize;
let mut to2 = from2 + dice2 as usize;
// Gestion prise de coin par puissance
let opp_rest_field = 13;
if to1 == opp_rest_field && to2 == opp_rest_field {
to1 -= 1;
to2 -= 1;
}
let checker_move1 = store::CheckerMove::new(from1, to1).unwrap_or_default();
let checker_move2 = store::CheckerMove::new(from2, to2).unwrap_or_default();
reward += 0.2;
Some(GameEvent::Move {
player_id: self.agent_player_id,
moves: (checker_move1, checker_move2),
})
}
};
// Appliquer l'événement si valide
if let Some(event) = event {
if self.game_state.validate(&event) {
self.game_state.consume(&event);
// Simuler le résultat des dés après un Roll
if matches!(action, TrictracAction::Roll) {
let mut rng = thread_rng();
let dice_values = (rng.gen_range(1..=6), rng.gen_range(1..=6));
let dice_event = GameEvent::RollResult {
player_id: self.agent_player_id,
dice: store::Dice {
values: dice_values,
},
};
if self.game_state.validate(&dice_event) {
self.game_state.consume(&dice_event);
}
}
} else {
// Pénalité pour action invalide
reward -= 2.0;
}
}
reward
}
// TODO : use default bot strategy
fn play_opponent_turn(&mut self) -> f32 {
let mut reward = 0.0;
let event = match self.game_state.turn_stage {
TurnStage::RollDice => GameEvent::Roll {
player_id: self.opponent_player_id,
},
TurnStage::RollWaiting => {
let mut rng = thread_rng();
let dice_values = (rng.gen_range(1..=6), rng.gen_range(1..=6));
GameEvent::RollResult {
player_id: self.opponent_player_id,
dice: store::Dice {
values: dice_values,
},
}
}
TurnStage::MarkAdvPoints | TurnStage::MarkPoints => {
let opponent_color = self.agent_color.opponent_color();
let dice_roll_count = self
.game_state
.players
.get(&self.opponent_player_id)
.unwrap()
.dice_roll_count;
let points_rules = PointsRules::new(
&opponent_color,
&self.game_state.board,
self.game_state.dice,
);
let (points, adv_points) = points_rules.get_points(dice_roll_count);
reward -= 0.3 * (points - adv_points) as f32; // Récompense proportionnelle aux points
GameEvent::Mark {
player_id: self.opponent_player_id,
points,
}
}
TurnStage::Move => {
let opponent_color = self.agent_color.opponent_color();
let rules = MoveRules::new(
&opponent_color,
&self.game_state.board,
self.game_state.dice,
);
let possible_moves = rules.get_possible_moves_sequences(true, vec![]);
// Stratégie simple : choix aléatoire
let mut rng = thread_rng();
let choosen_move = *possible_moves
.choose(&mut rng)
.unwrap_or(&(CheckerMove::default(), CheckerMove::default()));
GameEvent::Move {
player_id: self.opponent_player_id,
moves: if opponent_color == Color::White {
choosen_move
} else {
(choosen_move.0.mirror(), choosen_move.1.mirror())
},
}
}
TurnStage::HoldOrGoChoice => {
// Stratégie simple : toujours continuer
GameEvent::Go {
player_id: self.opponent_player_id,
}
}
};
if self.game_state.validate(&event) {
self.game_state.consume(&event);
}
reward
}
}
/// Entraîneur pour le modèle DQN
pub struct DqnTrainer {
agent: DqnAgent,
env: TrictracEnv,
}
impl DqnTrainer {
pub fn new(config: DqnConfig) -> Self {
Self {
agent: DqnAgent::new(config),
env: TrictracEnv::default(),
}
}
pub fn train_episode(&mut self) -> f32 {
let mut total_reward = 0.0;
let mut state = self.env.reset();
// let mut step_count = 0;
loop {
// step_count += 1;
let action = self.agent.select_action(&self.env.game_state, &state);
let (next_state, reward, done) = self.env.step(action.clone());
total_reward += reward;
let experience = Experience {
state: state.clone(),
action,
reward,
next_state: next_state.clone(),
done,
};
self.agent.store_experience(experience);
self.agent.train();
if done {
break;
}
// if step_count % 100 == 0 {
// println!("{:?}", next_state);
// }
state = next_state;
}
total_reward
}
pub fn train(
&mut self,
episodes: usize,
save_every: usize,
model_path: &str,
) -> Result<(), Box<dyn std::error::Error>> {
println!("Démarrage de l'entraînement DQN pour {episodes} épisodes");
for episode in 1..=episodes {
let reward = self.train_episode();
if episode % 100 == 0 {
println!(
"Épisode {}/{}: Récompense = {:.2}, Epsilon = {:.3}, Steps = {}",
episode,
episodes,
reward,
self.agent.get_epsilon(),
self.agent.get_step_count()
);
}
if episode % save_every == 0 {
let save_path = format!("{model_path}_episode_{episode}.json");
self.agent.save_model(&save_path)?;
println!("Modèle sauvegardé : {save_path}");
}
}
// Sauvegarder le modèle final
let final_path = format!("{model_path}_final.json");
self.agent.save_model(&final_path)?;
println!("Modèle final sauvegardé : {final_path}");
Ok(())
}
}