trictrac/bot/src/burnrl/main.rs
2025-07-26 16:52:29 +02:00

64 lines
2.1 KiB
Rust

use bot::burnrl::{dqn_model, environment, utils::demo_model};
use burn::backend::{ndarray::NdArrayDevice, Autodiff, NdArray};
use burn::module::Module;
use burn::record::{CompactRecorder, Recorder};
use burn_rl::agent::DQN;
use burn_rl::base::{Action, Agent, ElemType, Environment, State};
type Backend = Autodiff<NdArray<ElemType>>;
type Env = environment::TrictracEnvironment;
fn main() {
println!("> Entraînement");
let num_episodes = 50;
let agent = dqn_model::run::<Env, Backend>(num_episodes, false); //true);
let valid_agent = agent.valid();
println!("> Sauvegarde du modèle de validation");
let path = "models/burn_dqn_50".to_string();
save_model(valid_agent.model().as_ref().unwrap(), &path);
// println!("> Test avec le modèle entraîné");
// demo_model::<Env>(valid_agent);
println!("> Chargement du modèle pour test");
let loaded_model = load_model(&path);
let loaded_agent = DQN::new(loaded_model);
println!("> Test avec le modèle chargé");
demo_model(loaded_agent);
}
fn save_model(model: &dqn_model::Net<NdArray<ElemType>>, path: &String) {
let recorder = CompactRecorder::new();
let model_path = format!("{}_model.mpk", path);
println!("Modèle de validation sauvegardé : {}", model_path);
recorder
.record(model.clone().into_record(), model_path.into())
.unwrap();
}
fn load_model(path: &String) -> dqn_model::Net<NdArray<ElemType>> {
// TODO : reprendre le DENSE_SIZE de dqn_model.rs
const DENSE_SIZE: usize = 128;
let model_path = format!("{}_model.mpk", path);
println!("Chargement du modèle depuis : {}", model_path);
let device = NdArrayDevice::default();
let recorder = CompactRecorder::new();
let record = recorder
.load(model_path.into(), &device)
.expect("Impossible de charger le modèle");
dqn_model::Net::new(
<environment::TrictracEnvironment as Environment>::StateType::size(),
DENSE_SIZE,
<environment::TrictracEnvironment as Environment>::ActionType::size(),
)
.load_record(record)
}