use bot::dqn::burnrl::{dqn_model, environment, utils::demo_model}; use burn::backend::{ndarray::NdArrayDevice, Autodiff, NdArray}; use burn::module::Module; use burn::record::{CompactRecorder, Recorder}; use burn_rl::agent::DQN; use burn_rl::base::{Action, Agent, ElemType, Environment, State}; type Backend = Autodiff>; type Env = environment::TrictracEnvironment; fn main() { // println!("> Entraînement"); let conf = dqn_model::DqnConfig { num_episodes: 40, // memory_size: 8192, // must be set in dqn_model.rs with the MEMORY_SIZE constant // max_steps: 700, // must be set in environment.rs with the MAX_STEPS constant dense_size: 256, // neural network complexity eps_start: 0.9, // epsilon initial value (0.9 => more exploration) eps_end: 0.05, eps_decay: 3000.0, }; let agent = dqn_model::run::(&conf, false); //true); let valid_agent = agent.valid(); println!("> Sauvegarde du modèle de validation"); let path = "models/burn_dqn_50".to_string(); save_model(valid_agent.model().as_ref().unwrap(), &path); // println!("> Test avec le modèle entraîné"); // demo_model::(valid_agent); println!("> Chargement du modèle pour test"); let loaded_model = load_model(conf.dense_size, &path); let loaded_agent = DQN::new(loaded_model); println!("> Test avec le modèle chargé"); demo_model(loaded_agent); } fn save_model(model: &dqn_model::Net>, path: &String) { let recorder = CompactRecorder::new(); let model_path = format!("{}_model.mpk", path); println!("Modèle de validation sauvegardé : {}", model_path); recorder .record(model.clone().into_record(), model_path.into()) .unwrap(); } fn load_model(dense_size: usize, path: &String) -> dqn_model::Net> { let model_path = format!("{}_model.mpk", path); println!("Chargement du modèle depuis : {}", model_path); let device = NdArrayDevice::default(); let recorder = CompactRecorder::new(); let record = recorder .load(model_path.into(), &device) .expect("Impossible de charger le modèle"); dqn_model::Net::new( ::StateType::size(), dense_size, ::ActionType::size(), ) .load_record(record) }