use serde::{Deserialize, Serialize}; /// Configuration pour l'agent DQN #[derive(Debug, Clone, Serialize, Deserialize)] pub struct DqnConfig { pub state_size: usize, pub hidden_size: usize, pub num_actions: usize, pub learning_rate: f64, pub gamma: f64, pub epsilon: f64, pub epsilon_decay: f64, pub epsilon_min: f64, pub replay_buffer_size: usize, pub batch_size: usize, } impl Default for DqnConfig { fn default() -> Self { Self { state_size: 36, hidden_size: 256, num_actions: 3, learning_rate: 0.001, gamma: 0.99, epsilon: 0.1, epsilon_decay: 0.995, epsilon_min: 0.01, replay_buffer_size: 10000, batch_size: 32, } } } /// Réseau de neurones DQN simplifié (matrice de poids basique) #[derive(Debug, Clone, Serialize, Deserialize)] pub struct SimpleNeuralNetwork { pub weights1: Vec>, pub biases1: Vec, pub weights2: Vec>, pub biases2: Vec, pub weights3: Vec>, pub biases3: Vec, } impl SimpleNeuralNetwork { pub fn new(input_size: usize, hidden_size: usize, output_size: usize) -> Self { use rand::{thread_rng, Rng}; let mut rng = thread_rng(); // Initialisation aléatoire des poids avec Xavier/Glorot let scale1 = (2.0 / input_size as f32).sqrt(); let weights1 = (0..hidden_size) .map(|_| { (0..input_size) .map(|_| rng.gen_range(-scale1..scale1)) .collect() }) .collect(); let biases1 = vec![0.0; hidden_size]; let scale2 = (2.0 / hidden_size as f32).sqrt(); let weights2 = (0..hidden_size) .map(|_| { (0..hidden_size) .map(|_| rng.gen_range(-scale2..scale2)) .collect() }) .collect(); let biases2 = vec![0.0; hidden_size]; let scale3 = (2.0 / hidden_size as f32).sqrt(); let weights3 = (0..output_size) .map(|_| { (0..hidden_size) .map(|_| rng.gen_range(-scale3..scale3)) .collect() }) .collect(); let biases3 = vec![0.0; output_size]; Self { weights1, biases1, weights2, biases2, weights3, biases3, } } pub fn forward(&self, input: &[f32]) -> Vec { // Première couche let mut layer1: Vec = self.biases1.clone(); for (i, neuron_weights) in self.weights1.iter().enumerate() { for (j, &weight) in neuron_weights.iter().enumerate() { if j < input.len() { layer1[i] += input[j] * weight; } } layer1[i] = layer1[i].max(0.0); // ReLU } // Deuxième couche let mut layer2: Vec = self.biases2.clone(); for (i, neuron_weights) in self.weights2.iter().enumerate() { for (j, &weight) in neuron_weights.iter().enumerate() { if j < layer1.len() { layer2[i] += layer1[j] * weight; } } layer2[i] = layer2[i].max(0.0); // ReLU } // Couche de sortie let mut output: Vec = self.biases3.clone(); for (i, neuron_weights) in self.weights3.iter().enumerate() { for (j, &weight) in neuron_weights.iter().enumerate() { if j < layer2.len() { output[i] += layer2[j] * weight; } } } output } pub fn get_best_action(&self, input: &[f32]) -> usize { let q_values = self.forward(input); q_values .iter() .enumerate() .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap()) .map(|(index, _)| index) .unwrap_or(0) } pub fn save>( &self, path: P, ) -> Result<(), Box> { let data = serde_json::to_string_pretty(self)?; std::fs::write(path, data)?; Ok(()) } pub fn load>(path: P) -> Result> { let data = std::fs::read_to_string(path)?; let network = serde_json::from_str(&data)?; Ok(network) } }