use crate::burnrl::dqn_valid::utils::soft_update_linear; use crate::burnrl::environment::TrictracEnvironment; use burn::module::Module; use burn::nn::{Linear, LinearConfig}; use burn::optim::AdamWConfig; use burn::tensor::activation::relu; use burn::tensor::backend::{AutodiffBackend, Backend}; use burn::tensor::Tensor; use burn_rl::agent::DQN; use burn_rl::agent::{DQNModel, DQNTrainingConfig}; use burn_rl::base::{Action, ElemType, Environment, Memory, Model, State}; use std::fmt; use std::time::SystemTime; #[derive(Module, Debug)] pub struct Net { linear_0: Linear, linear_1: Linear, linear_2: Linear, } impl Net { #[allow(unused)] pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self { Self { linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()), linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()), linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()), } } fn consume(self) -> (Linear, Linear, Linear) { (self.linear_0, self.linear_1, self.linear_2) } } impl Model, Tensor> for Net { fn forward(&self, input: Tensor) -> Tensor { let layer_0_output = relu(self.linear_0.forward(input)); let layer_1_output = relu(self.linear_1.forward(layer_0_output)); relu(self.linear_2.forward(layer_1_output)) } fn infer(&self, input: Tensor) -> Tensor { self.forward(input) } } impl DQNModel for Net { fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self { let (linear_0, linear_1, linear_2) = this.consume(); Self { linear_0: soft_update_linear(linear_0, &that.linear_0, tau), linear_1: soft_update_linear(linear_1, &that.linear_1, tau), linear_2: soft_update_linear(linear_2, &that.linear_2, tau), } } } #[allow(unused)] const MEMORY_SIZE: usize = 8192; pub struct DqnConfig { pub max_steps: usize, pub num_episodes: usize, pub dense_size: usize, pub eps_start: f64, pub eps_end: f64, pub eps_decay: f64, pub gamma: f32, pub tau: f32, pub learning_rate: f32, pub batch_size: usize, pub clip_grad: f32, } impl fmt::Display for DqnConfig { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut s = String::new(); s.push_str(&format!("max_steps={:?}\n", self.max_steps)); s.push_str(&format!("num_episodes={:?}\n", self.num_episodes)); s.push_str(&format!("dense_size={:?}\n", self.dense_size)); s.push_str(&format!("eps_start={:?}\n", self.eps_start)); s.push_str(&format!("eps_end={:?}\n", self.eps_end)); s.push_str(&format!("eps_decay={:?}\n", self.eps_decay)); s.push_str(&format!("gamma={:?}\n", self.gamma)); s.push_str(&format!("tau={:?}\n", self.tau)); s.push_str(&format!("learning_rate={:?}\n", self.learning_rate)); s.push_str(&format!("batch_size={:?}\n", self.batch_size)); s.push_str(&format!("clip_grad={:?}\n", self.clip_grad)); write!(f, "{s}") } } impl Default for DqnConfig { fn default() -> Self { Self { max_steps: 2000, num_episodes: 1000, dense_size: 256, eps_start: 0.9, eps_end: 0.05, eps_decay: 1000.0, gamma: 0.999, tau: 0.005, learning_rate: 0.001, batch_size: 32, clip_grad: 100.0, } } } type MyAgent = DQN>; #[allow(unused)] pub fn run, B: AutodiffBackend>( conf: &DqnConfig, visualized: bool, ) -> DQN> { // ) -> impl Agent { let mut env = E::new(visualized); env.as_mut().max_steps = conf.max_steps; let model = Net::::new( <::StateType as State>::size(), conf.dense_size, <::ActionType as Action>::size(), ); let mut agent = MyAgent::new(model); // let config = DQNTrainingConfig::default(); let config = DQNTrainingConfig { gamma: conf.gamma, tau: conf.tau, learning_rate: conf.learning_rate, batch_size: conf.batch_size, clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value( conf.clip_grad, )), }; let mut memory = Memory::::default(); let mut optimizer = AdamWConfig::new() .with_grad_clipping(config.clip_grad.clone()) .init(); let mut policy_net = agent.model().as_ref().unwrap().clone(); let mut step = 0_usize; for episode in 0..conf.num_episodes { let mut episode_done = false; let mut episode_reward: ElemType = 0.0; let mut episode_duration = 0_usize; let mut state = env.state(); let mut now = SystemTime::now(); while !episode_done { let eps_threshold = conf.eps_end + (conf.eps_start - conf.eps_end) * f64::exp(-(step as f64) / conf.eps_decay); let action = DQN::>::react_with_exploration(&policy_net, state, eps_threshold); let snapshot = env.step(action); episode_reward += <::RewardType as Into>::into(snapshot.reward().clone()); memory.push( state, *snapshot.state(), action, snapshot.reward().clone(), snapshot.done(), ); if config.batch_size < memory.len() { policy_net = agent.train::(policy_net, &memory, &mut optimizer, &config); } step += 1; episode_duration += 1; if snapshot.done() || episode_duration >= conf.max_steps { let envmut = env.as_mut(); println!( "{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"epsilon\": {eps_threshold:.3}, \"rollpoints\":{}, \"duration\": {}}}", envmut.pointrolls_count, now.elapsed().unwrap().as_secs(), ); env.reset(); episode_done = true; now = SystemTime::now(); } else { state = *snapshot.state(); } } } agent }