use crate::dqn::burnrl::utils::soft_update_linear; use burn::module::Module; use burn::nn::{Linear, LinearConfig}; use burn::optim::AdamWConfig; use burn::tensor::activation::relu; use burn::tensor::backend::{AutodiffBackend, Backend}; use burn::tensor::Tensor; use burn_rl::agent::DQN; use burn_rl::agent::{DQNModel, DQNTrainingConfig}; use burn_rl::base::{Action, ElemType, Environment, Memory, Model, State}; use std::time::SystemTime; #[derive(Module, Debug)] pub struct Net { linear_0: Linear, linear_1: Linear, linear_2: Linear, } impl Net { #[allow(unused)] pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self { Self { linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()), linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()), linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()), } } fn consume(self) -> (Linear, Linear, Linear) { (self.linear_0, self.linear_1, self.linear_2) } } impl Model, Tensor> for Net { fn forward(&self, input: Tensor) -> Tensor { let layer_0_output = relu(self.linear_0.forward(input)); let layer_1_output = relu(self.linear_1.forward(layer_0_output)); relu(self.linear_2.forward(layer_1_output)) } fn infer(&self, input: Tensor) -> Tensor { self.forward(input) } } impl DQNModel for Net { fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self { let (linear_0, linear_1, linear_2) = this.consume(); Self { linear_0: soft_update_linear(linear_0, &that.linear_0, tau), linear_1: soft_update_linear(linear_1, &that.linear_1, tau), linear_2: soft_update_linear(linear_2, &that.linear_2, tau), } } } #[allow(unused)] const MEMORY_SIZE: usize = 4096; const DENSE_SIZE: usize = 128; const EPS_DECAY: f64 = 1000.0; const EPS_START: f64 = 0.9; const EPS_END: f64 = 0.05; type MyAgent = DQN>; #[allow(unused)] pub fn run( num_episodes: usize, visualized: bool, ) -> DQN> { // ) -> impl Agent { let mut env = E::new(visualized); let model = Net::::new( <::StateType as State>::size(), DENSE_SIZE, <::ActionType as Action>::size(), ); let mut agent = MyAgent::new(model); let config = DQNTrainingConfig::default(); let mut memory = Memory::::default(); let mut optimizer = AdamWConfig::new() .with_grad_clipping(config.clip_grad.clone()) .init(); let mut policy_net = agent.model().as_ref().unwrap().clone(); let mut step = 0_usize; for episode in 0..num_episodes { let mut episode_done = false; let mut episode_reward: ElemType = 0.0; let mut episode_duration = 0_usize; let mut state = env.state(); let mut now = SystemTime::now(); while !episode_done { let eps_threshold = EPS_END + (EPS_START - EPS_END) * f64::exp(-(step as f64) / EPS_DECAY); let action = DQN::>::react_with_exploration(&policy_net, state, eps_threshold); let snapshot = env.step(action); episode_reward += <::RewardType as Into>::into(snapshot.reward().clone()); memory.push( state, *snapshot.state(), action, snapshot.reward().clone(), snapshot.done(), ); if config.batch_size < memory.len() { policy_net = agent.train::(policy_net, &memory, &mut optimizer, &config); } step += 1; episode_duration += 1; if snapshot.done() || episode_duration >= E::MAX_STEPS { env.reset(); episode_done = true; println!( "{{\"episode\": {}, \"reward\": {:.4}, \"steps count\": {}, \"duration\": {}}}", episode, episode_reward, episode_duration, now.elapsed().unwrap().as_secs() ); now = SystemTime::now(); } else { state = *snapshot.state(); } } } agent }