filled quarters points

This commit is contained in:
Henri Bourcereau 2024-06-24 21:22:27 +02:00
parent 41f8b0ac6e
commit 97f8678645
3 changed files with 235 additions and 24 deletions

View file

@ -446,13 +446,51 @@ impl Board {
let fields = self.get_quarter_fields(field);
!fields.iter().any(|field| {
if color == Color::White {
self.positions[field - 1] < 1
self.positions[field - 1] < 2
} else {
self.positions[field - 1] > -1
self.positions[field - 1] > -2
}
})
}
pub fn get_quarter_filling_candidate(&self, color: Color) -> Vec<Field> {
let mut missing = vec![];
// first quarter
for quarter in [1..7, 7..13, 13..19, 19..25] {
missing = vec![];
for field in quarter {
let field_count = if color == Color::Black {
0 - self.positions[field - 1]
} else {
self.positions[field - 1]
};
if field_count < 0 {
// opponent checker found : this quarter cannot be filled
missing = vec![];
continue;
}
if field_count == 0 {
missing.push(field);
missing.push(field);
} else if field_count == 1 {
missing.push(field);
}
}
if missing.len() < 3 {
// fillable quarter found (no more than two missing checkers)
if let Some(field) = missing.first() {
// We check that there are sufficient checkers left to fill the quarter
if !self.is_quarter_fillable(color, *field) {
missing = vec![];
}
}
// there will be no other fillable quarter
break;
}
}
missing
}
/// Returns whether the `color` player can still fill the quarter containing the `field`
/// * `color` - color of the player
/// * `field` - field belonging to the quarter
@ -636,4 +674,13 @@ mod tests {
]);
assert!(board.is_quarter_fillable(Color::Black, 16));
}
#[test]
fn get_quarter_filling_candidate() {
let mut board = Board::new();
board.set_positions([
3, 1, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
assert_eq!(vec![2], board.get_quarter_filling_candidate(Color::White));
}
}

View file

@ -41,12 +41,22 @@ pub struct MoveRules {
impl MoveRules {
/// Revert board if color is black
pub fn new(color: &Color, board: &Board, dice: Dice) -> Self {
let board = if *color == Color::Black {
Self {
board: Self::get_board_from_color(color, board),
dice,
}
}
pub fn set_board(&mut self, color: &Color, board: &Board) {
self.board = Self::get_board_from_color(color, board);
}
fn get_board_from_color(color: &Color, board: &Board) -> Board {
if *color == Color::Black {
board.mirror()
} else {
board.clone()
};
Self { board, dice }
}
}
pub fn moves_follow_rules(&self, moves: &(CheckerMove, CheckerMove)) -> bool {
@ -155,7 +165,6 @@ impl MoveRules {
// Si possible, les deux dés doivent être joués
if moves.0.get_from() == 0 || moves.1.get_from() == 0 {
let mut possible_moves_sequences = self.get_possible_moves_sequences(true);
println!("{:?}", possible_moves_sequences);
possible_moves_sequences.retain(|moves| self.check_exit_rules(moves).is_ok());
// possible_moves_sequences.retain(|moves| self.check_corner_rules(moves).is_ok());
if !possible_moves_sequences.contains(&moves) && !possible_moves_sequences.is_empty() {
@ -313,14 +322,66 @@ impl MoveRules {
moves_seqs
}
pub fn get_scoring_quarter_filling_moves_sequences(&self) -> Vec<(CheckerMove, CheckerMove)> {
let all_seqs = self.get_quarter_filling_moves_sequences();
if all_seqs.len() == 0 {
return vec![];
}
let missing_fields = self.board.get_quarter_filling_candidate(Color::White);
match missing_fields.len() {
// preserve an already filled quarter : return one sequence
0 => vec![*all_seqs.last().unwrap()],
// two fields, two dices : all_seqs should already contain only one possibility
2 => all_seqs,
1 => {
let dest_field = missing_fields.first().unwrap();
let mut filling_moves_origins = vec![];
all_seqs.iter().fold(vec![], |mut acc, seq| {
let origins = self.get_sequence_origin_from_destination(*seq, *dest_field);
for origin in origins {
if !filling_moves_origins.contains(&origin) {
filling_moves_origins.push(origin);
acc.push(*seq);
}
}
acc
})
}
_ => vec![], // cannot be
}
}
fn get_sequence_origin_from_destination(
&self,
sequence: (CheckerMove, CheckerMove),
destination: Field,
) -> Vec<Field> {
let mut origin = vec![];
if sequence.0.get_to() == destination {
origin.push(sequence.0.get_from());
}
if sequence.1.get_to() == destination {
if sequence.0.get_to() == sequence.1.get_from() {
// tout d'une
origin.push(sequence.0.get_from());
} else {
origin.push(sequence.1.get_from());
}
}
origin
}
// Get all moves filling a quarter or preserving a filled quarter
pub fn get_quarter_filling_moves_sequences(&self) -> Vec<(CheckerMove, CheckerMove)> {
let mut moves_seqs = Vec::new();
let color = &Color::White;
let all_moves_seqs = self.get_possible_moves_sequences(true);
for moves in self.get_possible_moves_sequences(true) {
let mut board = self.board.clone();
board.move_checker(color, moves.0).unwrap();
board.move_checker(color, moves.1).unwrap();
if board.any_quarter_filled(*color) {
// println!("get_quarter_filling_moves_sequences board : {:?}", board);
if board.any_quarter_filled(*color) && !moves_seqs.contains(&moves) {
moves_seqs.push(moves);
}
}
@ -811,4 +872,57 @@ mod tests {
);
assert!(state.moves_possible(&moves));
}
#[test]
fn filling_moves_sequences() {
let mut state = MoveRules::default();
state.board.set_positions([
3, 3, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
state.dice.values = (2, 1);
let filling_moves_sequences = state.get_quarter_filling_moves_sequences();
// println!(
// "test filling_moves_sequences : {:?}",
// filling_moves_sequences
// );
assert_eq!(2, filling_moves_sequences.len());
state.board.set_positions([
3, 2, 3, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
state.dice.values = (2, 2);
let filling_moves_sequences = state.get_quarter_filling_moves_sequences();
// println!("{:?}", filling_moves_sequences);
assert_eq!(2, filling_moves_sequences.len());
state.board.set_positions([
3, 1, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
state.dice.values = (2, 1);
let filling_moves_sequences = state.get_quarter_filling_moves_sequences();
// println!(
// "test filling_moves_sequences 2 : {:?}",
// filling_moves_sequences
// );
assert_eq!(2, filling_moves_sequences.len());
}
#[test]
fn scoring_filling_moves_sequences() {
let mut state = MoveRules::default();
state.board.set_positions([
3, 1, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
state.dice.values = (2, 1);
assert_eq!(1, state.get_scoring_quarter_filling_moves_sequences().len());
state.board.set_positions([
2, 3, 3, 3, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
state.dice.values = (2, 1);
let filling_moves_sequences = state.get_scoring_quarter_filling_moves_sequences();
// println!("{:?}", filling_moves_sequences);
assert_eq!(3, filling_moves_sequences.len());
}
}

View file

@ -104,13 +104,36 @@ impl PointsRules {
}
}
fn get_jans(&self, board_ini: &Board, dices: &Vec<u8>) -> PossibleJans {
let mut dices_reversed = dices.clone();
dices_reversed.reverse();
pub fn set_dice(&mut self, dice: Dice) {
self.dice = dice;
self.move_rules.dice = dice;
}
pub fn update_positions(&mut self, positions: [i8; 24]) {
self.board.set_positions(positions);
self.move_rules.board.set_positions(positions);
}
fn get_jans(&self, board_ini: &Board) -> PossibleJans {
let dices = &vec![self.dice.values.0, self.dice.values.1];
let dices_reversed = &vec![self.dice.values.1, self.dice.values.0];
// « JAN DE RÉCOMPENSE »
// Battre à vrai une dame située dans la table des grands jans
// Battre à vrai une dame située dans la table des petits jans
let mut jans = self.get_jans_by_dice_order(board_ini, dices);
let jans_revert_dices = self.get_jans_by_dice_order(board_ini, &dices_reversed);
let jans_revert_dices = self.get_jans_by_dice_order(board_ini, dices_reversed);
jans.merge(jans_revert_dices);
// « JAN DE REMPLISSAGE »
// Faire un petit jan, un grand jan ou un jan de retour
let filling_moves_sequences = self
.move_rules
.get_scoring_quarter_filling_moves_sequences();
if !filling_moves_sequences.is_empty() {
jans.insert(Jan::FilledQuarter, filling_moves_sequences);
}
jans
}
@ -192,14 +215,20 @@ impl PointsRules {
pub fn get_points(&self) -> i8 {
let mut points: i8 = 0;
let jans = self.get_jans(&self.board, &vec![self.dice.values.0, self.dice.values.1]);
// « JAN DE RÉCOMPENSE »
// Battre à vrai une dame située dans la table des grands jans
// Battre à vrai une dame située dans la table des petits jans
// TODO : Battre le coin adverse
let jans = self.get_jans(&self.board);
points += jans.into_iter().fold(0, |acc: i8, (jan, moves)| {
acc + jan.get_points(self.dice.is_double()) * (moves.len() as i8)
});
// Jans de remplissage
let filling_moves_sequences = self.move_rules.get_quarter_filling_moves_sequences();
points += 4 * filling_moves_sequences.len() as i8;
// « JAN DE REMPLISSAGE »
// Faire un petit jan, un grand jan ou un jan de retour
// let filling_moves_sequences = self.move_rules.get_quarter_filling_moves_sequences();
// points += 4 * filling_moves_sequences.len() as i8;
// cf. https://fr.wikipedia.org/wiki/Trictrac
// Points par simple par moyen | Points par doublet par moyen Nombre de moyens possibles Bénéficiaire
// « JAN RARE »
@ -208,19 +237,12 @@ impl PointsRules {
// Jan de mézéas 4 6 1 Joueur
// Contre jan de deux tables 4 6 1 Adversaire
// Contre jan de mézéas 4 6 1 Adversaire
// « JAN DE RÉCOMPENSE »
// Battre à vrai une dame située dans la table des grands jans 2 | 4 1, 2 ou 3 (sauf doublet) Joueur
// Battre à vrai une dame située dans la table des petits jans 4 | 6 1, 2 ou 3 Joueur
// Battre le coin adverse 4 6 1 Joueur
// « JAN QUI NE PEUT »
// Battre à faux une dame
// située dans la table des grands jans 2 4 1 Adversaire
// Battre à faux une dame
// située dans la table des petits jans 4 6 1 Adversaire
// Pour chaque dé non jouable (dame impuissante) 2 2 n/a Adversaire
// « JAN DE REMPLISSAGE »
// Faire un petit jan, un grand jan ou un jan de retour 4 1, 2, ou 3 Joueur
// 6 1 ou 2 Joueur
// Conserver un petit jan, un grand jan ou un jan de retour 4 6 1 Joueur
// « AUTRE »
// Sortir le premier toutes ses dames 4 6 n/a Joueur
@ -320,11 +342,39 @@ mod tests {
#[test]
fn get_points() {
// ----- Jan de récompense
let mut rules = PointsRules::default();
rules.board.set_positions([
rules.update_positions([
2, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
rules.dice = Dice { values: (2, 3) };
rules.set_dice(Dice { values: (2, 3) });
assert_eq!(12, rules.get_points());
// ---- Jan de remplissage
rules.update_positions([
3, 1, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
rules.set_dice(Dice { values: (2, 1) });
assert_eq!(1, rules.get_jans(&rules.board).len());
assert_eq!(4, rules.get_points());
rules.update_positions([
2, 3, 1, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
rules.set_dice(Dice { values: (1, 1) });
assert_eq!(6, rules.get_points());
rules.update_positions([
3, 3, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
rules.set_dice(Dice { values: (1, 1) });
assert_eq!(12, rules.get_points());
// conservation jan rempli
rules.update_positions([
3, 3, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
]);
rules.set_dice(Dice { values: (1, 1) });
assert_eq!(6, rules.get_points());
}
}