feat: wip bot burn sac
This commit is contained in:
parent
088124fad1
commit
97167ff389
|
|
@ -17,6 +17,10 @@ path = "src/burnrl/dqn_big/main.rs"
|
|||
name = "train_dqn_burn"
|
||||
path = "src/burnrl/dqn/main.rs"
|
||||
|
||||
[[bin]]
|
||||
name = "train_sac_burn"
|
||||
path = "src/burnrl/sac/main.rs"
|
||||
|
||||
[[bin]]
|
||||
name = "train_ppo_burn"
|
||||
path = "src/burnrl/ppo/main.rs"
|
||||
|
|
|
|||
|
|
@ -4,7 +4,8 @@ ROOT="$(cd "$(dirname "$0")" && pwd)/../.."
|
|||
LOGS_DIR="$ROOT/bot/models/logs"
|
||||
|
||||
CFG_SIZE=12
|
||||
BINBOT=train_ppo_burn
|
||||
BINBOT=train_sac_burn
|
||||
# BINBOT=train_ppo_burn
|
||||
# BINBOT=train_dqn_burn
|
||||
# BINBOT=train_dqn_burn_big
|
||||
# BINBOT=train_dqn_burn_before
|
||||
|
|
|
|||
|
|
@ -4,3 +4,5 @@ pub mod dqn_valid;
|
|||
pub mod environment;
|
||||
pub mod environment_big;
|
||||
pub mod environment_valid;
|
||||
pub mod ppo;
|
||||
pub mod sac;
|
||||
|
|
|
|||
|
|
@ -13,18 +13,18 @@ type Env = environment::TrictracEnvironment;
|
|||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in dqn_model.rs : 8192
|
||||
// See also MEMORY_SIZE in ppo_model.rs : 8192
|
||||
let conf = ppo_model::PpoConfig {
|
||||
// defaults
|
||||
num_episodes: 50, // 40
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 256, // 128 neural network complexity (default 128)
|
||||
gamma: 0.9999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
dense_size: 128, // 128 neural network complexity (default 128)
|
||||
gamma: 0.999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 128, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 70.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
clip_grad: 100.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
|
||||
lambda: 0.95,
|
||||
epsilon_clip: 0.2,
|
||||
|
|
|
|||
45
bot/src/burnrl/sac/main.rs
Normal file
45
bot/src/burnrl/sac/main.rs
Normal file
|
|
@ -0,0 +1,45 @@
|
|||
use bot::burnrl::environment;
|
||||
use bot::burnrl::sac::{sac_model, utils::demo_model};
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::SAC;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = environment::TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in dqn_model.rs : 8192
|
||||
let conf = sac_model::SacConfig {
|
||||
// defaults
|
||||
num_episodes: 50, // 40
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 256, // 128 neural network complexity (default 128)
|
||||
|
||||
gamma: 0.999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
tau: 0.005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 32, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 1.0, // 1.0 limite max de correction à apporter au gradient
|
||||
min_probability: 1e-9,
|
||||
};
|
||||
println!("{conf}----------");
|
||||
let valid_agent = sac_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
// let valid_agent = agent.valid();
|
||||
|
||||
// println!("> Sauvegarde du modèle de validation");
|
||||
//
|
||||
// let path = "bot/models/burnrl_dqn".to_string();
|
||||
// save_model(valid_agent.model().as_ref().unwrap(), &path);
|
||||
//
|
||||
// println!("> Chargement du modèle pour test");
|
||||
// let loaded_model = load_model(conf.dense_size, &path);
|
||||
// let loaded_agent = DQN::new(loaded_model.unwrap());
|
||||
//
|
||||
// println!("> Test avec le modèle chargé");
|
||||
// demo_model(loaded_agent);
|
||||
}
|
||||
2
bot/src/burnrl/sac/mod.rs
Normal file
2
bot/src/burnrl/sac/mod.rs
Normal file
|
|
@ -0,0 +1,2 @@
|
|||
pub mod sac_model;
|
||||
pub mod utils;
|
||||
233
bot/src/burnrl/sac/sac_model.rs
Normal file
233
bot/src/burnrl/sac/sac_model.rs
Normal file
|
|
@ -0,0 +1,233 @@
|
|||
use crate::burnrl::environment::TrictracEnvironment;
|
||||
use crate::burnrl::sac::utils::soft_update_linear;
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::tensor::activation::{relu, softmax};
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{SACActor, SACCritic, SACNets, SACOptimizer, SACTrainingConfig, SAC};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::fmt;
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Actor<B: Backend> {
|
||||
linear_0: Linear<B>,
|
||||
linear_1: Linear<B>,
|
||||
linear_2: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Actor<B> {
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
Self {
|
||||
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
||||
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
||||
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Actor<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear_0.forward(input));
|
||||
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
||||
|
||||
softmax(self.linear_2.forward(layer_1_output), 1)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
self.forward(input)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> SACActor<B> for Actor<B> {}
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Critic<B: Backend> {
|
||||
linear_0: Linear<B>,
|
||||
linear_1: Linear<B>,
|
||||
linear_2: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Critic<B> {
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
Self {
|
||||
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
||||
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
||||
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
||||
}
|
||||
}
|
||||
|
||||
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
|
||||
(self.linear_0, self.linear_1, self.linear_2)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Critic<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear_0.forward(input));
|
||||
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
||||
|
||||
self.linear_2.forward(layer_1_output)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
self.forward(input)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> SACCritic<B> for Critic<B> {
|
||||
fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self {
|
||||
let (linear_0, linear_1, linear_2) = this.consume();
|
||||
|
||||
Self {
|
||||
linear_0: soft_update_linear(linear_0, &that.linear_0, tau),
|
||||
linear_1: soft_update_linear(linear_1, &that.linear_1, tau),
|
||||
linear_2: soft_update_linear(linear_2, &that.linear_2, tau),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 4096;
|
||||
|
||||
pub struct SacConfig {
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
|
||||
pub gamma: f32,
|
||||
pub tau: f32,
|
||||
pub learning_rate: f32,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
pub min_probability: f32,
|
||||
}
|
||||
|
||||
impl Default for SacConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 32,
|
||||
|
||||
gamma: 0.999,
|
||||
tau: 0.005,
|
||||
learning_rate: 0.001,
|
||||
batch_size: 32,
|
||||
clip_grad: 1.0,
|
||||
min_probability: 1e-9,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for SacConfig {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("tau={:?}\n", self.tau));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
s.push_str(&format!("clip_grad={:?}\n", self.clip_grad));
|
||||
s.push_str(&format!("min_probability={:?}\n", self.min_probability));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
type MyAgent<E, B> = SAC<E, B, Actor<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
conf: &SacConfig,
|
||||
visualized: bool,
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
let state_dim = <<E as Environment>::StateType as State>::size();
|
||||
let action_dim = <<E as Environment>::ActionType as Action>::size();
|
||||
|
||||
let mut actor = Actor::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let mut critic_1 = Critic::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let mut critic_2 = Critic::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let mut nets = SACNets::<B, Actor<B>, Critic<B>>::new(actor, critic_1, critic_2);
|
||||
|
||||
let mut agent = MyAgent::default();
|
||||
|
||||
let config = SACTrainingConfig {
|
||||
gamma: conf.gamma,
|
||||
tau: conf.tau,
|
||||
learning_rate: conf.learning_rate,
|
||||
min_probability: conf.min_probability,
|
||||
batch_size: conf.batch_size,
|
||||
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
|
||||
conf.clip_grad,
|
||||
)),
|
||||
};
|
||||
|
||||
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
|
||||
|
||||
let optimizer_config = AdamWConfig::new().with_grad_clipping(config.clip_grad.clone());
|
||||
|
||||
let mut optimizer = SACOptimizer::new(
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.init(),
|
||||
);
|
||||
|
||||
let mut policy_net = agent.model().clone();
|
||||
|
||||
let mut step = 0_usize;
|
||||
|
||||
for episode in 0..conf.num_episodes {
|
||||
let mut episode_done = false;
|
||||
let mut episode_reward = 0.0;
|
||||
let mut episode_duration = 0_usize;
|
||||
let mut state = env.state();
|
||||
let mut now = SystemTime::now();
|
||||
|
||||
while !episode_done {
|
||||
if let Some(action) = MyAgent::<E, _>::react_with_model(&state, &nets.actor) {
|
||||
let snapshot = env.step(action);
|
||||
|
||||
episode_reward += <<E as Environment>::RewardType as Into<ElemType>>::into(
|
||||
snapshot.reward().clone(),
|
||||
);
|
||||
|
||||
memory.push(
|
||||
state,
|
||||
*snapshot.state(),
|
||||
action,
|
||||
snapshot.reward().clone(),
|
||||
snapshot.done(),
|
||||
);
|
||||
|
||||
if config.batch_size < memory.len() {
|
||||
nets = agent.train::<MEMORY_SIZE, _>(nets, &memory, &mut optimizer, &config);
|
||||
}
|
||||
|
||||
step += 1;
|
||||
episode_duration += 1;
|
||||
|
||||
if snapshot.done() || episode_duration >= conf.max_steps {
|
||||
env.reset();
|
||||
episode_done = true;
|
||||
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"duration\": {}}}",
|
||||
now.elapsed().unwrap().as_secs()
|
||||
);
|
||||
now = SystemTime::now();
|
||||
} else {
|
||||
state = *snapshot.state();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
agent.valid(nets.actor)
|
||||
}
|
||||
78
bot/src/burnrl/sac/utils.rs
Normal file
78
bot/src/burnrl/sac/utils.rs
Normal file
|
|
@ -0,0 +1,78 @@
|
|||
use crate::burnrl::environment::{TrictracAction, TrictracEnvironment};
|
||||
use crate::burnrl::sac::sac_model;
|
||||
use crate::training_common::get_valid_action_indices;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::{Module, Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::cast::ToElement;
|
||||
use burn::tensor::Tensor;
|
||||
// use burn_rl::agent::{SACModel, SAC};
|
||||
use burn_rl::base::{Agent, ElemType, Environment};
|
||||
|
||||
// pub fn save_model(model: &sac_model::Net<NdArray<ElemType>>, path: &String) {
|
||||
// let recorder = CompactRecorder::new();
|
||||
// let model_path = format!("{path}.mpk");
|
||||
// println!("Modèle de validation sauvegardé : {model_path}");
|
||||
// recorder
|
||||
// .record(model.clone().into_record(), model_path.into())
|
||||
// .unwrap();
|
||||
// }
|
||||
//
|
||||
// pub fn load_model(dense_size: usize, path: &String) -> Option<sac_model::Net<NdArray<ElemType>>> {
|
||||
// let model_path = format!("{path}.mpk");
|
||||
// // println!("Chargement du modèle depuis : {model_path}");
|
||||
//
|
||||
// CompactRecorder::new()
|
||||
// .load(model_path.into(), &NdArrayDevice::default())
|
||||
// .map(|record| {
|
||||
// dqn_model::Net::new(
|
||||
// <TrictracEnvironment as Environment>::StateType::size(),
|
||||
// dense_size,
|
||||
// <TrictracEnvironment as Environment>::ActionType::size(),
|
||||
// )
|
||||
// .load_record(record)
|
||||
// })
|
||||
// .ok()
|
||||
// }
|
||||
//
|
||||
|
||||
pub fn demo_model<E: Environment>(agent: impl Agent<E>) {
|
||||
let mut env = E::new(true);
|
||||
let mut state = env.state();
|
||||
let mut done = false;
|
||||
while !done {
|
||||
if let Some(action) = agent.react(&state) {
|
||||
let snapshot = env.step(action);
|
||||
state = *snapshot.state();
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn soft_update_tensor<const N: usize, B: Backend>(
|
||||
this: &Param<Tensor<B, N>>,
|
||||
that: &Param<Tensor<B, N>>,
|
||||
tau: ElemType,
|
||||
) -> Param<Tensor<B, N>> {
|
||||
let that_weight = that.val();
|
||||
let this_weight = this.val();
|
||||
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
|
||||
|
||||
Param::initialized(ParamId::new(), new_weight)
|
||||
}
|
||||
|
||||
pub fn soft_update_linear<B: Backend>(
|
||||
this: Linear<B>,
|
||||
that: &Linear<B>,
|
||||
tau: ElemType,
|
||||
) -> Linear<B> {
|
||||
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
|
||||
let bias = match (&this.bias, &that.bias) {
|
||||
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
Linear::<B> { weight, bias }
|
||||
}
|
||||
Loading…
Reference in a new issue