feat: bot all algos
This commit is contained in:
parent
0c58490f87
commit
8f41cc1412
|
|
@ -1,10 +1,9 @@
|
|||
#!/usr/bin/env sh
|
||||
#!/usr/bin/env bash
|
||||
|
||||
ROOT="$(cd "$(dirname "$0")" && pwd)/../.."
|
||||
LOGS_DIR="$ROOT/bot/models/logs"
|
||||
|
||||
CFG_SIZE=17
|
||||
ALGO="sac"
|
||||
BINBOT=burn_train
|
||||
# BINBOT=train_ppo_burn
|
||||
# BINBOT=train_dqn_burn
|
||||
|
|
@ -15,6 +14,7 @@ OPPONENT="random"
|
|||
PLOT_EXT="png"
|
||||
|
||||
train() {
|
||||
ALGO=$1
|
||||
cargo build --release --bin=$BINBOT
|
||||
NAME="$(date +%Y-%m-%d_%H:%M:%S)"
|
||||
LOGS="$LOGS_DIR/$ALGO/$NAME.out"
|
||||
|
|
@ -23,6 +23,7 @@ train() {
|
|||
}
|
||||
|
||||
plot() {
|
||||
ALGO=$1
|
||||
NAME=$(ls -rt "$LOGS_DIR/$ALGO" | tail -n 1)
|
||||
LOGS="$LOGS_DIR/$ALGO/$NAME"
|
||||
cfgs=$(head -n $CFG_SIZE "$LOGS")
|
||||
|
|
@ -37,8 +38,14 @@ plot() {
|
|||
feedgnuplot --lines --points --unset grid --title "adv = $OPPONENT ; density = $dense_size ; decay = $eps_decay ; max steps = $max_steps" --terminal $PLOT_EXT >"$LOGS_DIR/$ALGO/$NAME.$PLOT_EXT"
|
||||
}
|
||||
|
||||
if [ "$1" = "plot" ]; then
|
||||
plot
|
||||
if [[ -z "$1" ]]; then
|
||||
echo "Usage : train [plot] <algo>"
|
||||
elif [ "$1" = "plot" ]; then
|
||||
if [[ -z "$2" ]]; then
|
||||
echo "Usage : train [plot] <algo>"
|
||||
else
|
||||
plot $2
|
||||
fi
|
||||
else
|
||||
train
|
||||
train $1
|
||||
fi
|
||||
|
|
|
|||
9
bot/src/burnrl/algos/mod.rs
Normal file
9
bot/src/burnrl/algos/mod.rs
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
pub mod dqn;
|
||||
pub mod dqn_big;
|
||||
pub mod dqn_valid;
|
||||
pub mod ppo;
|
||||
pub mod ppo_big;
|
||||
pub mod ppo_valid;
|
||||
pub mod sac;
|
||||
pub mod sac_big;
|
||||
pub mod sac_valid;
|
||||
|
|
@ -161,8 +161,7 @@ pub fn run<
|
|||
|
||||
save_model(&model_with_loaded_weights, path);
|
||||
}
|
||||
let valid_agent = agent.valid(model);
|
||||
valid_agent
|
||||
agent.valid(model)
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
||||
|
|
@ -190,4 +189,3 @@ pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemTy
|
|||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
191
bot/src/burnrl/algos/ppo_big.rs
Normal file
191
bot/src/burnrl/algos/ppo_big.rs
Normal file
|
|
@ -0,0 +1,191 @@
|
|||
use crate::burnrl::environment_big::TrictracEnvironment;
|
||||
use crate::burnrl::utils::Config;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Initializer, Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::{relu, softmax};
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{PPOModel, PPOOutput, PPOTrainingConfig, PPO};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::env;
|
||||
use std::fs;
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Net<B: Backend> {
|
||||
linear: Linear<B>,
|
||||
linear_actor: Linear<B>,
|
||||
linear_critic: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Net<B> {
|
||||
#[allow(unused)]
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
let initializer = Initializer::XavierUniform { gain: 1.0 };
|
||||
Self {
|
||||
linear: LinearConfig::new(input_size, dense_size)
|
||||
.with_initializer(initializer.clone())
|
||||
.init(&Default::default()),
|
||||
linear_actor: LinearConfig::new(dense_size, output_size)
|
||||
.with_initializer(initializer.clone())
|
||||
.init(&Default::default()),
|
||||
linear_critic: LinearConfig::new(dense_size, 1)
|
||||
.with_initializer(initializer)
|
||||
.init(&Default::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, PPOOutput<B>, Tensor<B, 2>> for Net<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> PPOOutput<B> {
|
||||
let layer_0_output = relu(self.linear.forward(input));
|
||||
let policies = softmax(self.linear_actor.forward(layer_0_output.clone()), 1);
|
||||
let values = self.linear_critic.forward(layer_0_output);
|
||||
|
||||
PPOOutput::<B>::new(policies, values)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear.forward(input));
|
||||
softmax(self.linear_actor.forward(layer_0_output.clone()), 1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> PPOModel<B> for Net<B> {}
|
||||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 512;
|
||||
|
||||
type MyAgent<E, B> = PPO<E, B, Net<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
// ) -> PPO<E, B, Net<B>> {
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
|
||||
let mut model = Net::<B>::new(
|
||||
<<E as Environment>::StateType as State>::size(),
|
||||
conf.dense_size,
|
||||
<<E as Environment>::ActionType as Action>::size(),
|
||||
);
|
||||
let agent = MyAgent::default();
|
||||
let config = PPOTrainingConfig {
|
||||
gamma: conf.gamma,
|
||||
lambda: conf.lambda,
|
||||
epsilon_clip: conf.epsilon_clip,
|
||||
critic_weight: conf.critic_weight,
|
||||
entropy_weight: conf.entropy_weight,
|
||||
learning_rate: conf.learning_rate,
|
||||
epochs: conf.epochs,
|
||||
batch_size: conf.batch_size,
|
||||
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
|
||||
conf.clip_grad,
|
||||
)),
|
||||
};
|
||||
|
||||
let mut optimizer = AdamWConfig::new()
|
||||
.with_grad_clipping(config.clip_grad.clone())
|
||||
.init();
|
||||
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
|
||||
for episode in 0..conf.num_episodes {
|
||||
let mut episode_done = false;
|
||||
let mut episode_reward = 0.0;
|
||||
let mut episode_duration = 0_usize;
|
||||
let mut now = SystemTime::now();
|
||||
|
||||
env.reset();
|
||||
while !episode_done {
|
||||
let state = env.state();
|
||||
if let Some(action) = MyAgent::<E, _>::react_with_model(&state, &model) {
|
||||
let snapshot = env.step(action);
|
||||
episode_reward += <<E as Environment>::RewardType as Into<ElemType>>::into(
|
||||
snapshot.reward().clone(),
|
||||
);
|
||||
|
||||
memory.push(
|
||||
state,
|
||||
*snapshot.state(),
|
||||
action,
|
||||
snapshot.reward().clone(),
|
||||
snapshot.done(),
|
||||
);
|
||||
|
||||
episode_duration += 1;
|
||||
episode_done = snapshot.done() || episode_duration >= conf.max_steps;
|
||||
}
|
||||
}
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"duration\": {}}}",
|
||||
now.elapsed().unwrap().as_secs(),
|
||||
);
|
||||
|
||||
now = SystemTime::now();
|
||||
model = MyAgent::train::<MEMORY_SIZE>(model, &memory, &mut optimizer, &config);
|
||||
memory.clear();
|
||||
}
|
||||
|
||||
if let Some(path) = &conf.save_path {
|
||||
let device = NdArrayDevice::default();
|
||||
let recorder = CompactRecorder::new();
|
||||
let tmp_path = env::temp_dir().join("tmp_model.mpk");
|
||||
|
||||
// Save the trained model (backend B) to a temporary file
|
||||
recorder
|
||||
.record(model.clone().into_record(), tmp_path.clone())
|
||||
.expect("Failed to save temporary model");
|
||||
|
||||
// Create a new model instance with the target backend (NdArray)
|
||||
let model_to_save: Net<NdArray<ElemType>> = Net::new(
|
||||
<<E as Environment>::StateType as State>::size(),
|
||||
conf.dense_size,
|
||||
<<E as Environment>::ActionType as Action>::size(),
|
||||
);
|
||||
|
||||
// Load the record from the temporary file into the new model
|
||||
let record = recorder
|
||||
.load(tmp_path.clone(), &device)
|
||||
.expect("Failed to load temporary model");
|
||||
let model_with_loaded_weights = model_to_save.load_record(record);
|
||||
|
||||
// Clean up the temporary file
|
||||
fs::remove_file(tmp_path).expect("Failed to remove temporary model file");
|
||||
|
||||
save_model(&model_with_loaded_weights, path);
|
||||
}
|
||||
agent.valid(model)
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
191
bot/src/burnrl/algos/ppo_valid.rs
Normal file
191
bot/src/burnrl/algos/ppo_valid.rs
Normal file
|
|
@ -0,0 +1,191 @@
|
|||
use crate::burnrl::environment_valid::TrictracEnvironment;
|
||||
use crate::burnrl::utils::Config;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Initializer, Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::{relu, softmax};
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{PPOModel, PPOOutput, PPOTrainingConfig, PPO};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::env;
|
||||
use std::fs;
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Net<B: Backend> {
|
||||
linear: Linear<B>,
|
||||
linear_actor: Linear<B>,
|
||||
linear_critic: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Net<B> {
|
||||
#[allow(unused)]
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
let initializer = Initializer::XavierUniform { gain: 1.0 };
|
||||
Self {
|
||||
linear: LinearConfig::new(input_size, dense_size)
|
||||
.with_initializer(initializer.clone())
|
||||
.init(&Default::default()),
|
||||
linear_actor: LinearConfig::new(dense_size, output_size)
|
||||
.with_initializer(initializer.clone())
|
||||
.init(&Default::default()),
|
||||
linear_critic: LinearConfig::new(dense_size, 1)
|
||||
.with_initializer(initializer)
|
||||
.init(&Default::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, PPOOutput<B>, Tensor<B, 2>> for Net<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> PPOOutput<B> {
|
||||
let layer_0_output = relu(self.linear.forward(input));
|
||||
let policies = softmax(self.linear_actor.forward(layer_0_output.clone()), 1);
|
||||
let values = self.linear_critic.forward(layer_0_output);
|
||||
|
||||
PPOOutput::<B>::new(policies, values)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear.forward(input));
|
||||
softmax(self.linear_actor.forward(layer_0_output.clone()), 1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> PPOModel<B> for Net<B> {}
|
||||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 512;
|
||||
|
||||
type MyAgent<E, B> = PPO<E, B, Net<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
// ) -> PPO<E, B, Net<B>> {
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
|
||||
let mut model = Net::<B>::new(
|
||||
<<E as Environment>::StateType as State>::size(),
|
||||
conf.dense_size,
|
||||
<<E as Environment>::ActionType as Action>::size(),
|
||||
);
|
||||
let agent = MyAgent::default();
|
||||
let config = PPOTrainingConfig {
|
||||
gamma: conf.gamma,
|
||||
lambda: conf.lambda,
|
||||
epsilon_clip: conf.epsilon_clip,
|
||||
critic_weight: conf.critic_weight,
|
||||
entropy_weight: conf.entropy_weight,
|
||||
learning_rate: conf.learning_rate,
|
||||
epochs: conf.epochs,
|
||||
batch_size: conf.batch_size,
|
||||
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
|
||||
conf.clip_grad,
|
||||
)),
|
||||
};
|
||||
|
||||
let mut optimizer = AdamWConfig::new()
|
||||
.with_grad_clipping(config.clip_grad.clone())
|
||||
.init();
|
||||
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
|
||||
for episode in 0..conf.num_episodes {
|
||||
let mut episode_done = false;
|
||||
let mut episode_reward = 0.0;
|
||||
let mut episode_duration = 0_usize;
|
||||
let mut now = SystemTime::now();
|
||||
|
||||
env.reset();
|
||||
while !episode_done {
|
||||
let state = env.state();
|
||||
if let Some(action) = MyAgent::<E, _>::react_with_model(&state, &model) {
|
||||
let snapshot = env.step(action);
|
||||
episode_reward += <<E as Environment>::RewardType as Into<ElemType>>::into(
|
||||
snapshot.reward().clone(),
|
||||
);
|
||||
|
||||
memory.push(
|
||||
state,
|
||||
*snapshot.state(),
|
||||
action,
|
||||
snapshot.reward().clone(),
|
||||
snapshot.done(),
|
||||
);
|
||||
|
||||
episode_duration += 1;
|
||||
episode_done = snapshot.done() || episode_duration >= conf.max_steps;
|
||||
}
|
||||
}
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"duration\": {}}}",
|
||||
now.elapsed().unwrap().as_secs(),
|
||||
);
|
||||
|
||||
now = SystemTime::now();
|
||||
model = MyAgent::train::<MEMORY_SIZE>(model, &memory, &mut optimizer, &config);
|
||||
memory.clear();
|
||||
}
|
||||
|
||||
if let Some(path) = &conf.save_path {
|
||||
let device = NdArrayDevice::default();
|
||||
let recorder = CompactRecorder::new();
|
||||
let tmp_path = env::temp_dir().join("tmp_model.mpk");
|
||||
|
||||
// Save the trained model (backend B) to a temporary file
|
||||
recorder
|
||||
.record(model.clone().into_record(), tmp_path.clone())
|
||||
.expect("Failed to save temporary model");
|
||||
|
||||
// Create a new model instance with the target backend (NdArray)
|
||||
let model_to_save: Net<NdArray<ElemType>> = Net::new(
|
||||
<<E as Environment>::StateType as State>::size(),
|
||||
conf.dense_size,
|
||||
<<E as Environment>::ActionType as Action>::size(),
|
||||
);
|
||||
|
||||
// Load the record from the temporary file into the new model
|
||||
let record = recorder
|
||||
.load(tmp_path.clone(), &device)
|
||||
.expect("Failed to load temporary model");
|
||||
let model_with_loaded_weights = model_to_save.load_record(record);
|
||||
|
||||
// Clean up the temporary file
|
||||
fs::remove_file(tmp_path).expect("Failed to remove temporary model file");
|
||||
|
||||
save_model(&model_with_loaded_weights, path);
|
||||
}
|
||||
agent.valid(model)
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
222
bot/src/burnrl/algos/sac_big.rs
Normal file
222
bot/src/burnrl/algos/sac_big.rs
Normal file
|
|
@ -0,0 +1,222 @@
|
|||
use crate::burnrl::environment_big::TrictracEnvironment;
|
||||
use crate::burnrl::utils::{soft_update_linear, Config};
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::{relu, softmax};
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{SACActor, SACCritic, SACNets, SACOptimizer, SACTrainingConfig, SAC};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Actor<B: Backend> {
|
||||
linear_0: Linear<B>,
|
||||
linear_1: Linear<B>,
|
||||
linear_2: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Actor<B> {
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
Self {
|
||||
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
||||
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
||||
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Actor<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear_0.forward(input));
|
||||
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
||||
|
||||
softmax(self.linear_2.forward(layer_1_output), 1)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
self.forward(input)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> SACActor<B> for Actor<B> {}
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Critic<B: Backend> {
|
||||
linear_0: Linear<B>,
|
||||
linear_1: Linear<B>,
|
||||
linear_2: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Critic<B> {
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
Self {
|
||||
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
||||
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
||||
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
||||
}
|
||||
}
|
||||
|
||||
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
|
||||
(self.linear_0, self.linear_1, self.linear_2)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Critic<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear_0.forward(input));
|
||||
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
||||
|
||||
self.linear_2.forward(layer_1_output)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
self.forward(input)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> SACCritic<B> for Critic<B> {
|
||||
fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self {
|
||||
let (linear_0, linear_1, linear_2) = this.consume();
|
||||
|
||||
Self {
|
||||
linear_0: soft_update_linear(linear_0, &that.linear_0, tau),
|
||||
linear_1: soft_update_linear(linear_1, &that.linear_1, tau),
|
||||
linear_2: soft_update_linear(linear_2, &that.linear_2, tau),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 4096;
|
||||
|
||||
type MyAgent<E, B> = SAC<E, B, Actor<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
let state_dim = <<E as Environment>::StateType as State>::size();
|
||||
let action_dim = <<E as Environment>::ActionType as Action>::size();
|
||||
|
||||
let actor = Actor::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let critic_1 = Critic::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let critic_2 = Critic::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let mut nets = SACNets::<B, Actor<B>, Critic<B>>::new(actor, critic_1, critic_2);
|
||||
|
||||
let mut agent = MyAgent::default();
|
||||
|
||||
let config = SACTrainingConfig {
|
||||
gamma: conf.gamma,
|
||||
tau: conf.tau,
|
||||
learning_rate: conf.learning_rate,
|
||||
min_probability: conf.min_probability,
|
||||
batch_size: conf.batch_size,
|
||||
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
|
||||
conf.clip_grad,
|
||||
)),
|
||||
};
|
||||
|
||||
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
|
||||
|
||||
let optimizer_config = AdamWConfig::new().with_grad_clipping(config.clip_grad.clone());
|
||||
|
||||
let mut optimizer = SACOptimizer::new(
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.init(),
|
||||
);
|
||||
|
||||
let mut step = 0_usize;
|
||||
|
||||
for episode in 0..conf.num_episodes {
|
||||
let mut episode_done = false;
|
||||
let mut episode_reward = 0.0;
|
||||
let mut episode_duration = 0_usize;
|
||||
let mut state = env.state();
|
||||
let mut now = SystemTime::now();
|
||||
|
||||
while !episode_done {
|
||||
if let Some(action) = MyAgent::<E, _>::react_with_model(&state, &nets.actor) {
|
||||
let snapshot = env.step(action);
|
||||
|
||||
episode_reward += <<E as Environment>::RewardType as Into<ElemType>>::into(
|
||||
snapshot.reward().clone(),
|
||||
);
|
||||
|
||||
memory.push(
|
||||
state,
|
||||
*snapshot.state(),
|
||||
action,
|
||||
snapshot.reward().clone(),
|
||||
snapshot.done(),
|
||||
);
|
||||
|
||||
if config.batch_size < memory.len() {
|
||||
nets = agent.train::<MEMORY_SIZE, _>(nets, &memory, &mut optimizer, &config);
|
||||
}
|
||||
|
||||
step += 1;
|
||||
episode_duration += 1;
|
||||
|
||||
if snapshot.done() || episode_duration >= conf.max_steps {
|
||||
env.reset();
|
||||
episode_done = true;
|
||||
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"duration\": {}}}",
|
||||
now.elapsed().unwrap().as_secs()
|
||||
);
|
||||
now = SystemTime::now();
|
||||
} else {
|
||||
state = *snapshot.state();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let valid_agent = agent.valid(nets.actor);
|
||||
if let Some(path) = &conf.save_path {
|
||||
if let Some(model) = valid_agent.model() {
|
||||
save_model(model, path);
|
||||
}
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Actor<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Actor<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Actor::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
222
bot/src/burnrl/algos/sac_valid.rs
Normal file
222
bot/src/burnrl/algos/sac_valid.rs
Normal file
|
|
@ -0,0 +1,222 @@
|
|||
use crate::burnrl::environment_valid::TrictracEnvironment;
|
||||
use crate::burnrl::utils::{soft_update_linear, Config};
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::{relu, softmax};
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{SACActor, SACCritic, SACNets, SACOptimizer, SACTrainingConfig, SAC};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Actor<B: Backend> {
|
||||
linear_0: Linear<B>,
|
||||
linear_1: Linear<B>,
|
||||
linear_2: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Actor<B> {
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
Self {
|
||||
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
||||
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
||||
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Actor<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear_0.forward(input));
|
||||
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
||||
|
||||
softmax(self.linear_2.forward(layer_1_output), 1)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
self.forward(input)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> SACActor<B> for Actor<B> {}
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct Critic<B: Backend> {
|
||||
linear_0: Linear<B>,
|
||||
linear_1: Linear<B>,
|
||||
linear_2: Linear<B>,
|
||||
}
|
||||
|
||||
impl<B: Backend> Critic<B> {
|
||||
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
||||
Self {
|
||||
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
||||
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
||||
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
||||
}
|
||||
}
|
||||
|
||||
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
|
||||
(self.linear_0, self.linear_1, self.linear_2)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Critic<B> {
|
||||
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
let layer_0_output = relu(self.linear_0.forward(input));
|
||||
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
||||
|
||||
self.linear_2.forward(layer_1_output)
|
||||
}
|
||||
|
||||
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
||||
self.forward(input)
|
||||
}
|
||||
}
|
||||
|
||||
impl<B: Backend> SACCritic<B> for Critic<B> {
|
||||
fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self {
|
||||
let (linear_0, linear_1, linear_2) = this.consume();
|
||||
|
||||
Self {
|
||||
linear_0: soft_update_linear(linear_0, &that.linear_0, tau),
|
||||
linear_1: soft_update_linear(linear_1, &that.linear_1, tau),
|
||||
linear_2: soft_update_linear(linear_2, &that.linear_2, tau),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 4096;
|
||||
|
||||
type MyAgent<E, B> = SAC<E, B, Actor<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
let state_dim = <<E as Environment>::StateType as State>::size();
|
||||
let action_dim = <<E as Environment>::ActionType as Action>::size();
|
||||
|
||||
let actor = Actor::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let critic_1 = Critic::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let critic_2 = Critic::<B>::new(state_dim, conf.dense_size, action_dim);
|
||||
let mut nets = SACNets::<B, Actor<B>, Critic<B>>::new(actor, critic_1, critic_2);
|
||||
|
||||
let mut agent = MyAgent::default();
|
||||
|
||||
let config = SACTrainingConfig {
|
||||
gamma: conf.gamma,
|
||||
tau: conf.tau,
|
||||
learning_rate: conf.learning_rate,
|
||||
min_probability: conf.min_probability,
|
||||
batch_size: conf.batch_size,
|
||||
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
|
||||
conf.clip_grad,
|
||||
)),
|
||||
};
|
||||
|
||||
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
|
||||
|
||||
let optimizer_config = AdamWConfig::new().with_grad_clipping(config.clip_grad.clone());
|
||||
|
||||
let mut optimizer = SACOptimizer::new(
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.clone().init(),
|
||||
optimizer_config.init(),
|
||||
);
|
||||
|
||||
let mut step = 0_usize;
|
||||
|
||||
for episode in 0..conf.num_episodes {
|
||||
let mut episode_done = false;
|
||||
let mut episode_reward = 0.0;
|
||||
let mut episode_duration = 0_usize;
|
||||
let mut state = env.state();
|
||||
let mut now = SystemTime::now();
|
||||
|
||||
while !episode_done {
|
||||
if let Some(action) = MyAgent::<E, _>::react_with_model(&state, &nets.actor) {
|
||||
let snapshot = env.step(action);
|
||||
|
||||
episode_reward += <<E as Environment>::RewardType as Into<ElemType>>::into(
|
||||
snapshot.reward().clone(),
|
||||
);
|
||||
|
||||
memory.push(
|
||||
state,
|
||||
*snapshot.state(),
|
||||
action,
|
||||
snapshot.reward().clone(),
|
||||
snapshot.done(),
|
||||
);
|
||||
|
||||
if config.batch_size < memory.len() {
|
||||
nets = agent.train::<MEMORY_SIZE, _>(nets, &memory, &mut optimizer, &config);
|
||||
}
|
||||
|
||||
step += 1;
|
||||
episode_duration += 1;
|
||||
|
||||
if snapshot.done() || episode_duration >= conf.max_steps {
|
||||
env.reset();
|
||||
episode_done = true;
|
||||
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"duration\": {}}}",
|
||||
now.elapsed().unwrap().as_secs()
|
||||
);
|
||||
now = SystemTime::now();
|
||||
} else {
|
||||
state = *snapshot.state();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let valid_agent = agent.valid(nets.actor);
|
||||
if let Some(path) = &conf.save_path {
|
||||
if let Some(model) = valid_agent.model() {
|
||||
save_model(model, path);
|
||||
}
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Actor<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Actor<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Actor::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
|
|
@ -1,8 +1,10 @@
|
|||
use bot::burnrl::algos::{
|
||||
dqn, dqn_big, dqn_valid, ppo, ppo_big, ppo_valid, sac, sac_big, sac_valid,
|
||||
};
|
||||
use bot::burnrl::environment::TrictracEnvironment;
|
||||
use bot::burnrl::environment_big::TrictracEnvironment as TrictracEnvironmentBig;
|
||||
use bot::burnrl::environment_valid::TrictracEnvironment as TrictracEnvironmentValid;
|
||||
use bot::burnrl::utils::{demo_model, Config};
|
||||
use bot::burnrl::{dqn_big_model, dqn_model, dqn_valid_model, ppo_model, sac_model};
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::base::ElemType;
|
||||
use std::env;
|
||||
|
|
@ -51,9 +53,9 @@ fn main() {
|
|||
|
||||
match algo.as_str() {
|
||||
"dqn" => {
|
||||
let _agent = dqn_model::run::<TrictracEnvironment, Backend>(&conf, false);
|
||||
let _agent = dqn::run::<TrictracEnvironment, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = dqn_model::load_model(conf.dense_size, &path);
|
||||
let loaded_model = dqn::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::DQN<TrictracEnvironment, _, _> =
|
||||
burn_rl::agent::DQN::new(loaded_model.unwrap());
|
||||
|
||||
|
|
@ -61,33 +63,87 @@ fn main() {
|
|||
demo_model(loaded_agent);
|
||||
}
|
||||
"dqn_big" => {
|
||||
let _agent = dqn_big_model::run::<TrictracEnvironmentBig, Backend>(&conf, false);
|
||||
let _agent = dqn_big::run::<TrictracEnvironmentBig, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = dqn_big::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::DQN<TrictracEnvironmentBig, _, _> =
|
||||
burn_rl::agent::DQN::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"dqn_valid" => {
|
||||
let _agent = dqn_valid_model::run::<TrictracEnvironmentValid, Backend>(&conf, false);
|
||||
let _agent = dqn_valid::run::<TrictracEnvironmentValid, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = dqn_valid::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::DQN<TrictracEnvironmentValid, _, _> =
|
||||
burn_rl::agent::DQN::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"sac" => {
|
||||
let _agent = sac_model::run::<TrictracEnvironment, Backend>(&conf, false);
|
||||
let _agent = sac::run::<TrictracEnvironment, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = sac_model::load_model(conf.dense_size, &path);
|
||||
let loaded_model = sac::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::SAC<TrictracEnvironment, _, _> =
|
||||
burn_rl::agent::SAC::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"ppo" => {
|
||||
let _agent = ppo_model::run::<TrictracEnvironment, Backend>(&conf, false);
|
||||
"sac_big" => {
|
||||
let _agent = sac_big::run::<TrictracEnvironmentBig, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = ppo_model::load_model(conf.dense_size, &path);
|
||||
let loaded_model = sac_big::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::SAC<TrictracEnvironmentBig, _, _> =
|
||||
burn_rl::agent::SAC::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"sac_valid" => {
|
||||
let _agent = sac_valid::run::<TrictracEnvironmentValid, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = sac_valid::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::SAC<TrictracEnvironmentValid, _, _> =
|
||||
burn_rl::agent::SAC::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"ppo" => {
|
||||
let _agent = ppo::run::<TrictracEnvironment, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = ppo::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::PPO<TrictracEnvironment, _, _> =
|
||||
burn_rl::agent::PPO::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"ppo_big" => {
|
||||
let _agent = ppo_big::run::<TrictracEnvironmentBig, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = ppo_big::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::PPO<TrictracEnvironmentBig, _, _> =
|
||||
burn_rl::agent::PPO::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
"ppo_valid" => {
|
||||
let _agent = ppo_valid::run::<TrictracEnvironmentValid, Backend>(&conf, false);
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = ppo_valid::load_model(conf.dense_size, &path);
|
||||
let loaded_agent: burn_rl::agent::PPO<TrictracEnvironmentValid, _, _> =
|
||||
burn_rl::agent::PPO::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
&_ => {
|
||||
dbg!("unknown algo {algo}");
|
||||
println!("unknown algo {algo}");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,9 +1,5 @@
|
|||
pub mod dqn_big_model;
|
||||
pub mod dqn_model;
|
||||
pub mod dqn_valid_model;
|
||||
pub mod algos;
|
||||
pub mod environment;
|
||||
pub mod environment_big;
|
||||
pub mod environment_valid;
|
||||
pub mod ppo_model;
|
||||
pub mod sac_model;
|
||||
pub mod utils;
|
||||
|
|
|
|||
|
|
@ -6,11 +6,11 @@ use crate::{BotStrategy, CheckerMove, Color, GameState, PlayerId};
|
|||
use log::info;
|
||||
use store::MoveRules;
|
||||
|
||||
use crate::burnrl::dqn_model;
|
||||
use crate::burnrl::algos::dqn;
|
||||
use crate::burnrl::environment;
|
||||
use crate::training_common::{get_valid_action_indices, sample_valid_action, TrictracAction};
|
||||
|
||||
type DqnBurnNetwork = dqn_model::Net<NdArray<ElemType>>;
|
||||
type DqnBurnNetwork = dqn::Net<NdArray<ElemType>>;
|
||||
|
||||
/// Stratégie DQN pour le bot - ne fait que charger et utiliser un modèle pré-entraîné
|
||||
#[derive(Debug)]
|
||||
|
|
@ -40,7 +40,7 @@ impl DqnBurnStrategy {
|
|||
pub fn new_with_model(model_path: &String) -> Self {
|
||||
info!("Loading model {model_path:?}");
|
||||
let mut strategy = Self::new();
|
||||
strategy.model = dqn_model::load_model(256, model_path);
|
||||
strategy.model = dqn::load_model(256, model_path);
|
||||
strategy
|
||||
}
|
||||
|
||||
|
|
|
|||
8
justfile
8
justfile
|
|
@ -25,13 +25,13 @@ pythonlib:
|
|||
trainsimple:
|
||||
cargo build --release --bin=train_dqn_simple
|
||||
LD_LIBRARY_PATH=./target/release ./target/release/train_dqn_simple | tee /tmp/train.out
|
||||
trainbot:
|
||||
trainbot algo:
|
||||
#python ./store/python/trainModel.py
|
||||
# cargo run --bin=train_dqn # ok
|
||||
# ./bot/scripts/trainValid.sh
|
||||
./bot/scripts/train.sh
|
||||
plottrainbot:
|
||||
./bot/scripts/train.sh plot
|
||||
./bot/scripts/train.sh {{algo}}
|
||||
plottrainbot algo:
|
||||
./bot/scripts/train.sh plot {{algo}}
|
||||
debugtrainbot:
|
||||
cargo build --bin=train_dqn_burn
|
||||
RUST_BACKTRACE=1 LD_LIBRARY_PATH=./target/debug ./target/debug/train_dqn_burn
|
||||
|
|
|
|||
|
|
@ -271,7 +271,7 @@ impl Board {
|
|||
.map(|cells| {
|
||||
cells
|
||||
.into_iter()
|
||||
.map(|cell| format!("{:>5}", cell))
|
||||
.map(|cell| format!("{cell:>5}"))
|
||||
.collect::<Vec<String>>()
|
||||
.join("")
|
||||
})
|
||||
|
|
@ -282,7 +282,7 @@ impl Board {
|
|||
.map(|cells| {
|
||||
cells
|
||||
.into_iter()
|
||||
.map(|cell| format!("{:>5}", cell))
|
||||
.map(|cell| format!("{cell:>5}"))
|
||||
.collect::<Vec<String>>()
|
||||
.join("")
|
||||
})
|
||||
|
|
|
|||
|
|
@ -244,7 +244,7 @@ impl GameState {
|
|||
pos_bits.push_str(&white_bits);
|
||||
pos_bits.push_str(&black_bits);
|
||||
|
||||
pos_bits = format!("{:0>108}", pos_bits);
|
||||
pos_bits = format!("{pos_bits:0>108}");
|
||||
// println!("{}", pos_bits);
|
||||
let pos_u8 = pos_bits
|
||||
.as_bytes()
|
||||
|
|
@ -647,9 +647,7 @@ impl GameState {
|
|||
|
||||
fn inc_roll_count(&mut self, player_id: PlayerId) {
|
||||
self.players.get_mut(&player_id).map(|p| {
|
||||
if p.dice_roll_count < u8::MAX {
|
||||
p.dice_roll_count += 1;
|
||||
}
|
||||
p.dice_roll_count = p.dice_roll_count.saturating_add(1);
|
||||
p
|
||||
});
|
||||
}
|
||||
|
|
|
|||
|
|
@ -603,7 +603,7 @@ mod tests {
|
|||
);
|
||||
let points_rules = PointsRules::new(&Color::Black, &board, Dice { values: (2, 4) });
|
||||
let jans = points_rules.get_result_jans(8);
|
||||
assert!(jans.0.len() > 0);
|
||||
assert!(!jans.0.is_empty());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
|
@ -628,7 +628,7 @@ mod tests {
|
|||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, -2,
|
||||
],
|
||||
);
|
||||
let mut rules = PointsRules::new(&Color::Black, &board, Dice { values: (2, 3) });
|
||||
let rules = PointsRules::new(&Color::Black, &board, Dice { values: (2, 3) });
|
||||
assert_eq!(12, rules.get_points(5).0);
|
||||
|
||||
// Battre à vrai une dame située dans la table des grands jans : 2 + 2 = 4
|
||||
|
|
|
|||
Loading…
Reference in a new issue