wip broken

This commit is contained in:
Henri Bourcereau 2025-06-28 22:41:59 +02:00
parent 6a7b1cbebc
commit 894a24033c
2 changed files with 103 additions and 396 deletions

View file

@ -1,10 +1,19 @@
use bot::strategy::burn_dqn_agent::{BurnDqnAgent, DqnConfig, Experience};
use bot::strategy::burn_environment::{TrictracAction, TrictracEnvironment};
use bot::strategy::dqn_common::get_valid_actions;
use burn::optim::AdamConfig;
use burn_rl::base::Environment;
use bot::strategy::burn_dqn_agent::{DqnNetwork, MyBackend};
use bot::strategy::burn_environment::{TrictracAction, TrictracEnvironment, TrictracState};
use burn::optim::{AdamWConfig, Optimizer};
use burn_rl::{
agent::{DQN, DQNTrainingConfig},
base::{Action, Agent, ElemType, Environment, Memory, State},
};
use std::env;
const DENSE_SIZE: usize = 128;
const EPS_DECAY: f64 = 1000.0;
const EPS_START: f64 = 0.9;
const EPS_END: f64 = 0.05;
type MyAgent = DQN<TrictracEnvironment, MyBackend, DqnNetwork<MyBackend>>;
fn main() -> Result<(), Box<dyn std::error::Error>> {
env_logger::init();
@ -71,193 +80,73 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
// Créer le dossier models s'il n'existe pas
std::fs::create_dir_all("models")?;
println!("=== Entraînement DQN complet avec Burn ===");
println!("=== Entraînement DQN complet avec Burn-RL ===");
println!("Épisodes : {}", episodes);
println!("Modèle : {}", model_path);
println!("Sauvegarde tous les {} épisodes", save_every);
println!("Max steps par épisode : {}", max_steps_per_episode);
println!();
// Configuration DQN
let config = DqnConfig {
state_size: 36,
action_size: 1252, // Espace d'actions réduit via contexte
hidden_size: 256,
learning_rate: 0.001,
gamma: 0.99,
epsilon: 1.0,
epsilon_decay: 0.995,
epsilon_min: 0.01,
replay_buffer_size: 10000,
batch_size: 32,
target_update_freq: 100,
};
// Créer l'agent et l'environnement
let mut agent = BurnDqnAgent::new(config);
let mut optimizer = AdamConfig::new().init();
let mut env = TrictracEnvironment::new(true);
let model = DqnNetwork::<MyBackend>::new(
TrictracState::size(),
DENSE_SIZE,
TrictracAction::size(),
&Default::default(),
);
let mut agent = MyAgent::new(model);
let config = DQNTrainingConfig::default();
let mut memory = Memory::<TrictracEnvironment, MyBackend>::default();
let mut optimizer = AdamWConfig::new()
.with_grad_clipping(config.clip_grad.clone())
.init();
let mut policy_net = agent.model().as_ref().unwrap().clone();
let mut step = 0_usize;
// Variables pour les statistiques
let mut total_rewards = Vec::new();
let mut episode_lengths = Vec::new();
let mut losses = Vec::new();
for episode in 0..episodes {
let mut episode_done = false;
let mut episode_reward: ElemType = 0.0;
let mut episode_duration = 0_usize;
let mut state = env.state();
println!("Début de l'entraînement avec agent DQN complet...");
println!();
while !episode_done {
let eps_threshold =
EPS_END + (EPS_START - EPS_END) * f64::exp(-(step as f64) / EPS_DECAY);
let action = MyAgent::react_with_exploration(&policy_net, state, eps_threshold);
let snapshot = env.step(action);
for episode in 1..=episodes {
// Reset de l'environnement
let mut snapshot = env.reset();
let mut episode_reward = 0.0;
let mut step = 0;
let mut episode_loss = 0.0;
let mut loss_count = 0;
episode_reward += <f32 as Into<ElemType>>::into(snapshot.reward().clone());
memory.push(
state,
*snapshot.state(),
action,
snapshot.reward().clone(),
snapshot.done(),
);
if config.batch_size < memory.len() {
policy_net = agent.train(&policy_net, &memory, &mut optimizer, &config);
}
loop {
step += 1;
let current_state_data = snapshot.state().data;
episode_duration += 1;
// Obtenir les actions valides selon le contexte du jeu
let valid_actions = get_valid_actions(&env.game);
if valid_actions.is_empty() {
break;
}
// Convertir les actions Trictrac en indices pour l'agent
let valid_indices: Vec<usize> = (0..valid_actions.len()).collect();
// Sélectionner une action avec l'agent DQN
let action_index = agent.select_action(
&current_state_data,
&valid_indices,
);
let action = TrictracAction {
index: action_index as u32,
};
// Exécuter l'action
snapshot = env.step(action);
episode_reward += *snapshot.reward();
// Préparer l'expérience pour l'agent
let experience = Experience {
state: current_state_data.to_vec(),
action: action_index,
reward: *snapshot.reward(),
next_state: if snapshot.done() {
None
} else {
Some(snapshot.state().data.to_vec())
},
done: snapshot.done(),
};
// Ajouter l'expérience au replay buffer
agent.add_experience(experience);
// Entraîner l'agent
if let Some(loss) = agent.train_step(&mut optimizer) {
episode_loss += loss;
loss_count += 1;
}
// Vérifier les conditions de fin
if snapshot.done() || step >= max_steps_per_episode {
break;
}
}
// Calculer la loss moyenne de l'épisode
let avg_loss = if loss_count > 0 {
episode_loss / loss_count as f32
} else {
0.0
};
// Sauvegarder les statistiques
total_rewards.push(episode_reward);
episode_lengths.push(step);
losses.push(avg_loss);
// Affichage des statistiques
if episode % save_every == 0 {
let avg_reward =
total_rewards.iter().rev().take(save_every).sum::<f32>() / save_every as f32;
let avg_length =
episode_lengths.iter().rev().take(save_every).sum::<usize>() / save_every;
let avg_episode_loss =
losses.iter().rev().take(save_every).sum::<f32>() / save_every as f32;
println!("Episode {} | Avg Reward: {:.3} | Avg Length: {} | Avg Loss: {:.6} | Epsilon: {:.3} | Buffer: {}",
episode, avg_reward, avg_length, avg_episode_loss, agent.get_epsilon(), agent.get_buffer_size());
// Sauvegarder le modèle
let checkpoint_path = format!("{}_{}", model_path, episode);
if let Err(e) = agent.save_model(&checkpoint_path) {
eprintln!("Erreur lors de la sauvegarde : {}", e);
if snapshot.done() || episode_duration >= TrictracEnvironment::MAX_STEPS {
env.reset();
episode_done = true;
println!(
"{{\"episode\": {}, \"reward\": {:.4}, \"duration\": {}}}",
episode, episode_reward, episode_duration
);
} else {
println!(" → Modèle sauvegardé : {}", checkpoint_path);
state = *snapshot.state();
}
} else if episode % 10 == 0 {
println!(
"Episode {} | Reward: {:.3} | Length: {} | Loss: {:.6} | Epsilon: {:.3}",
episode,
episode_reward,
step,
avg_loss,
agent.get_epsilon()
);
}
}
// Sauvegarder le modèle final
let final_path = format!("{}_final", model_path);
agent.save_model(&final_path)?;
// Statistiques finales
println!();
println!("=== Résultats de l'entraînement ===");
let final_avg_reward = total_rewards
.iter()
.rev()
.take(100.min(episodes))
.sum::<f32>()
/ 100.min(episodes) as f32;
let final_avg_length = episode_lengths
.iter()
.rev()
.take(100.min(episodes))
.sum::<usize>()
/ 100.min(episodes);
let final_avg_loss =
losses.iter().rev().take(100.min(episodes)).sum::<f32>() / 100.min(episodes) as f32;
println!(
"Récompense moyenne (100 derniers épisodes) : {:.3}",
final_avg_reward
);
println!(
"Longueur moyenne (100 derniers épisodes) : {}",
final_avg_length
);
println!(
"Loss moyenne (100 derniers épisodes) : {:.6}",
final_avg_loss
);
println!("Epsilon final : {:.3}", agent.get_epsilon());
println!("Taille du buffer final : {}", agent.get_buffer_size());
// Statistiques globales
let max_reward = total_rewards
.iter()
.cloned()
.fold(f32::NEG_INFINITY, f32::max);
let min_reward = total_rewards.iter().cloned().fold(f32::INFINITY, f32::min);
println!("Récompense max : {:.3}", max_reward);
println!("Récompense min : {:.3}", min_reward);
// agent.save_model(&final_path)?;
println!();
println!("Entraînement terminé avec succès !");

View file

@ -1,13 +1,11 @@
use burn::{
backend::{ndarray::NdArrayDevice, Autodiff, NdArray},
module::Module,
nn::{loss::MseLoss, Linear, LinearConfig},
optim::Optimizer,
record::{CompactRecorder, Recorder},
tensor::Tensor,
nn::{Linear, LinearConfig},
tensor::{activation::relu, backend::Backend, Tensor},
};
use burn_rl::agent::DQNModel;
use serde::{Deserialize, Serialize};
use std::collections::VecDeque;
/// Backend utilisé pour l'entraînement (Autodiff + NdArray)
pub type MyBackend = Autodiff<NdArray>;
@ -16,14 +14,14 @@ pub type InferenceBackend = NdArray;
pub type MyDevice = NdArrayDevice;
/// Réseau de neurones pour DQN
#[derive(Module, Debug)]
pub struct DqnNetwork<B: burn::prelude::Backend> {
#[derive(Module, Debug, Clone)]
pub struct DqnNetwork<B: Backend> {
fc1: Linear<B>,
fc2: Linear<B>,
fc3: Linear<B>,
}
impl<B: burn::prelude::Backend> DqnNetwork<B> {
impl<B: Backend> DqnNetwork<B> {
/// Crée un nouveau réseau DQN
pub fn new(
input_size: usize,
@ -38,14 +36,46 @@ impl<B: burn::prelude::Backend> DqnNetwork<B> {
Self { fc1, fc2, fc3 }
}
/// Forward pass du réseau
pub fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
(self.fc1, self.fc2, self.fc3)
}
}
impl<B: Backend> burn_rl::base::Model<Tensor<B, 2>, Tensor<B, 2>> for DqnNetwork<B> {
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
let x = self.fc1.forward(input);
let x = burn::tensor::activation::relu(x);
let x = relu(x);
let x = self.fc2.forward(x);
let x = burn::tensor::activation::relu(x);
let x = relu(x);
self.fc3.forward(x)
}
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
self.forward(input)
}
}
impl<B: Backend> DQNModel<B> for DqnNetwork<B> {
fn soft_update(this: Self, that: &Self, tau: f32) -> Self {
let (fc1, fc2, fc3) = this.consume();
Self {
fc1: soft_update_linear(fc1, &that.fc1, tau),
fc2: soft_update_linear(fc2, &that.fc2, tau),
fc3: soft_update_linear(fc3, &that.fc3, tau),
}
}
}
pub fn soft_update_linear<B: Backend>(
this: Linear<B>,
that: &Linear<B>,
tau: f32,
) -> Linear<B> {
let mut updated = this.clone();
let that_record = that.clone().into_record();
let updated_record = updated.clone().into_record();
updated.load_record(updated_record.soft_update(tau, that_record));
updated
}
/// Configuration pour l'entraînement DQN
@ -91,215 +121,3 @@ pub struct Experience {
pub next_state: Option<Vec<f32>>,
pub done: bool,
}
/// Agent DQN utilisant Burn
pub struct BurnDqnAgent {
config: DqnConfig,
device: MyDevice,
q_network: DqnNetwork<MyBackend>,
target_network: DqnNetwork<MyBackend>,
replay_buffer: VecDeque<Experience>,
epsilon: f32,
step_count: usize,
}
impl BurnDqnAgent {
/// Crée un nouvel agent DQN
pub fn new(config: DqnConfig) -> Self {
let device = MyDevice::default();
let q_network = DqnNetwork::new(
config.state_size,
config.hidden_size,
config.action_size,
&device,
);
let target_network = DqnNetwork::new(
config.state_size,
config.hidden_size,
config.action_size,
&device,
);
Self {
config: config.clone(),
device,
q_network,
target_network,
replay_buffer: VecDeque::new(),
epsilon: config.epsilon,
step_count: 0,
}
}
/// Sélectionne une action avec epsilon-greedy
pub fn select_action(&mut self, state: &[f32], valid_actions: &[usize]) -> usize {
if valid_actions.is_empty() {
// Retourne une action par défaut ou une action "nulle" si aucune n'est valide
// Dans le contexte du jeu, cela ne devrait pas arriver si la logique de fin de partie est correcte
return 0;
}
// Exploration epsilon-greedy
if rand::random::<f32>() < self.epsilon {
let random_index = rand::random::<usize>() % valid_actions.len();
return valid_actions[random_index];
}
// Exploitation : choisir la meilleure action selon le Q-network
let state_tensor = Tensor::<MyBackend, 2>::from_floats(state, &self.device)
.reshape([1, self.config.state_size]);
let q_values = self.q_network.forward(state_tensor);
// Convertir en vecteur pour traitement
let q_data = q_values.into_data().convert::<f32>().into_vec().unwrap();
// Trouver la meilleure action parmi les actions valides
let mut best_action = valid_actions[0];
let mut best_q_value = f32::NEG_INFINITY;
for &action in valid_actions {
if action < q_data.len() && q_data[action] > best_q_value {
best_q_value = q_data[action];
best_action = action;
}
}
best_action
}
/// Ajoute une expérience au replay buffer
pub fn add_experience(&mut self, experience: Experience) {
if self.replay_buffer.len() >= self.config.replay_buffer_size {
self.replay_buffer.pop_front();
}
self.replay_buffer.push_back(experience);
}
/// Entraîne le réseau sur un batch d'expériences
pub fn train_step(
&mut self,
optimizer: &mut impl Optimizer<DqnNetwork<MyBackend>, MyBackend>,
) -> Option<f32> {
if self.replay_buffer.len() < self.config.batch_size {
return None;
}
// Échantillonner un batch d'expériences
let batch = self.sample_batch();
// Préparer les tenseurs d'état
let states: Vec<f32> = batch.iter().flat_map(|exp| exp.state.clone()).collect();
let state_tensor = Tensor::<MyBackend, 2>::from_floats(states.as_slice(), &self.device)
.reshape([self.config.batch_size, self.config.state_size]);
// Calculer les Q-values actuelles
let current_q_values = self.q_network.forward(state_tensor);
// Pour l'instant, version simplifiée sans calcul de target
let target_q_values = current_q_values.clone();
// Calculer la loss MSE
let loss = MseLoss::new().forward(
current_q_values,
target_q_values,
burn::nn::loss::Reduction::Mean,
);
// Backpropagation (version simplifiée)
let grads = loss.backward();
// Gradients linked to each parameter of the model.
let grads = burn::optim::GradientsParams::from_grads(grads, &self.q_network);
self.q_network = optimizer.step(self.config.learning_rate, self.q_network.clone(), grads);
// Mise à jour du réseau cible
self.step_count += 1;
if self.step_count % self.config.target_update_freq == 0 {
self.update_target_network();
}
// Décroissance d'epsilon
if self.epsilon > self.config.epsilon_min {
self.epsilon *= self.config.epsilon_decay;
}
Some(loss.into_scalar())
}
/// Échantillonne un batch d'expériences du replay buffer
fn sample_batch(&self) -> Vec<Experience> {
let mut batch = Vec::new();
let buffer_size = self.replay_buffer.len();
for _ in 0..self.config.batch_size.min(buffer_size) {
let index = rand::random::<usize>() % buffer_size;
if let Some(exp) = self.replay_buffer.get(index) {
batch.push(exp.clone());
}
}
batch
}
/// Met à jour le réseau cible avec les poids du réseau principal
fn update_target_network(&mut self) {
// Copie simple des poids
self.target_network = self.q_network.clone();
}
/// Sauvegarde le modèle
pub fn save_model(&self, path: &str) -> Result<(), Box<dyn std::error::Error>> {
// Sauvegarder la configuration
let config_path = format!("{}_config.json", path);
let config_json = serde_json::to_string_pretty(&self.config)?;
std::fs::write(config_path, config_json)?;
// Sauvegarder le réseau pour l'inférence (conversion vers NdArray backend)
let inference_network = self.q_network.clone().into_record();
let recorder = CompactRecorder::new();
let model_path = format!("{}_model.burn", path);
recorder.record(inference_network, model_path.into())?;
println!("Modèle sauvegardé : {}", path);
Ok(())
}
/// Charge un modèle pour l'inférence
pub fn load_model_for_inference(
path: &str,
) -> Result<(DqnNetwork<InferenceBackend>, DqnConfig), Box<dyn std::error::Error>> {
// Charger la configuration
let config_path = format!("{}_config.json", path);
let config_json = std::fs::read_to_string(config_path)?;
let config: DqnConfig = serde_json::from_str(&config_json)?;
// Créer le réseau pour l'inférence
let device = NdArrayDevice::default();
let network = DqnNetwork::<InferenceBackend>::new(
config.state_size,
config.hidden_size,
config.action_size,
&device,
);
// Charger les poids
let model_path = format!("{}_model.burn", path);
let recorder = CompactRecorder::new();
let record = recorder.load(model_path.into(), &device)?;
let network = network.load_record(record);
Ok((network, config))
}
/// Retourne l'epsilon actuel
pub fn get_epsilon(&self) -> f32 {
self.epsilon
}
/// Retourne la taille du replay buffer
pub fn get_buffer_size(&self) -> usize {
self.replay_buffer.len()
}
}