wip burn-rl dqn example

This commit is contained in:
Henri Bourcereau 2025-07-08 21:58:15 +02:00
parent b98a135749
commit 354dcfd341
10 changed files with 224 additions and 20 deletions

View file

@ -5,13 +5,17 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[[bin]]
name = "train_dqn_burn"
path = "src/burnrl/main.rs"
[[bin]] [[bin]]
name = "train_dqn" name = "train_dqn"
path = "src/bin/train_dqn.rs" path = "src/bin/train_dqn.rs"
[[bin]] # [[bin]]
name = "train_burn_rl" # name = "train_burn_rl"
path = "src/bin/train_burn_rl.rs" # path = "src/bin/train_burn_rl.rs"
[[bin]] [[bin]]
name = "train_dqn_full" name = "train_dqn_full"

View file

@ -1,4 +1,4 @@
use bot::strategy::burn_environment::{TrictracAction, TrictracEnvironment}; use bot::burnrl::environment::{TrictracAction, TrictracEnvironment};
use bot::strategy::dqn_common::get_valid_actions; use bot::strategy::dqn_common::get_valid_actions;
use burn_rl::base::Environment; use burn_rl::base::Environment;
use rand::Rng; use rand::Rng;
@ -224,4 +224,3 @@ fn print_help() {
println!(" - Pour l'instant, implémente seulement une politique epsilon-greedy simple"); println!(" - Pour l'instant, implémente seulement une politique epsilon-greedy simple");
println!(" - L'intégration avec un vrai agent DQN peut être ajoutée plus tard"); println!(" - L'intégration avec un vrai agent DQN peut être ajoutée plus tard");
} }

View file

@ -1,5 +1,5 @@
use bot::burnrl::environment::{TrictracAction, TrictracEnvironment};
use bot::strategy::burn_dqn_agent::{BurnDqnAgent, DqnConfig, Experience}; use bot::strategy::burn_dqn_agent::{BurnDqnAgent, DqnConfig, Experience};
use bot::strategy::burn_environment::{TrictracAction, TrictracEnvironment};
use bot::strategy::dqn_common::get_valid_actions; use bot::strategy::dqn_common::get_valid_actions;
use burn::optim::AdamConfig; use burn::optim::AdamConfig;
use burn_rl::base::Environment; use burn_rl::base::Environment;
@ -130,10 +130,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
let valid_indices: Vec<usize> = (0..valid_actions.len()).collect(); let valid_indices: Vec<usize> = (0..valid_actions.len()).collect();
// Sélectionner une action avec l'agent DQN // Sélectionner une action avec l'agent DQN
let action_index = agent.select_action( let action_index = agent.select_action(&current_state_data, &valid_indices);
&current_state_data,
&valid_indices,
);
let action = TrictracAction { let action = TrictracAction {
index: action_index as u32, index: action_index as u32,
}; };

142
bot/src/burnrl/dqn_model.rs Normal file
View file

@ -0,0 +1,142 @@
use crate::burnrl::utils::soft_update_linear;
use burn::module::Module;
use burn::nn::{Linear, LinearConfig};
use burn::optim::AdamWConfig;
use burn::tensor::activation::relu;
use burn::tensor::backend::{AutodiffBackend, Backend};
use burn::tensor::Tensor;
use burn_rl::agent::DQN;
use burn_rl::agent::{DQNModel, DQNTrainingConfig};
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
#[derive(Module, Debug)]
pub struct Net<B: Backend> {
linear_0: Linear<B>,
linear_1: Linear<B>,
linear_2: Linear<B>,
}
impl<B: Backend> Net<B> {
#[allow(unused)]
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
Self {
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
}
}
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
(self.linear_0, self.linear_1, self.linear_2)
}
}
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Net<B> {
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
let layer_0_output = relu(self.linear_0.forward(input));
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
relu(self.linear_2.forward(layer_1_output))
}
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
self.forward(input)
}
}
impl<B: Backend> DQNModel<B> for Net<B> {
fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self {
let (linear_0, linear_1, linear_2) = this.consume();
Self {
linear_0: soft_update_linear(linear_0, &that.linear_0, tau),
linear_1: soft_update_linear(linear_1, &that.linear_1, tau),
linear_2: soft_update_linear(linear_2, &that.linear_2, tau),
}
}
}
#[allow(unused)]
const MEMORY_SIZE: usize = 4096;
const DENSE_SIZE: usize = 128;
const EPS_DECAY: f64 = 1000.0;
const EPS_START: f64 = 0.9;
const EPS_END: f64 = 0.05;
type MyAgent<E, B> = DQN<E, B, Net<B>>;
#[allow(unused)]
pub fn run<E: Environment, B: AutodiffBackend>(
num_episodes: usize,
visualized: bool,
) -> impl Agent<E> {
let mut env = E::new(visualized);
let model = Net::<B>::new(
<<E as Environment>::StateType as State>::size(),
DENSE_SIZE,
<<E as Environment>::ActionType as Action>::size(),
);
let mut agent = MyAgent::new(model);
let config = DQNTrainingConfig::default();
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
let mut optimizer = AdamWConfig::new()
.with_grad_clipping(config.clip_grad.clone())
.init();
let mut policy_net = agent.model().as_ref().unwrap().clone();
let mut step = 0_usize;
for episode in 0..num_episodes {
let mut episode_done = false;
let mut episode_reward: ElemType = 0.0;
let mut episode_duration = 0_usize;
let mut state = env.state();
while !episode_done {
let eps_threshold =
EPS_END + (EPS_START - EPS_END) * f64::exp(-(step as f64) / EPS_DECAY);
let action =
DQN::<E, B, Net<B>>::react_with_exploration(&policy_net, state, eps_threshold);
let snapshot = env.step(action);
episode_reward +=
<<E as Environment>::RewardType as Into<ElemType>>::into(snapshot.reward().clone());
memory.push(
state,
*snapshot.state(),
action,
snapshot.reward().clone(),
snapshot.done(),
);
if config.batch_size < memory.len() {
policy_net =
agent.train::<MEMORY_SIZE>(policy_net, &memory, &mut optimizer, &config);
}
step += 1;
episode_duration += 1;
if snapshot.done() || episode_duration >= E::MAX_STEPS {
env.reset();
episode_done = true;
println!(
"{{\"episode\": {}, \"reward\": {:.4}, \"duration\": {}}}",
episode, episode_reward, episode_duration
);
} else {
state = *snapshot.state();
}
}
}
agent.valid()
}

View file

@ -1,3 +1,4 @@
use crate::strategy::dqn_common;
use burn::{prelude::Backend, tensor::Tensor}; use burn::{prelude::Backend, tensor::Tensor};
use burn_rl::base::{Action, Environment, Snapshot, State}; use burn_rl::base::{Action, Environment, Snapshot, State};
use rand::{thread_rng, Rng}; use rand::{thread_rng, Rng};
@ -57,9 +58,7 @@ impl Action for TrictracAction {
} }
fn size() -> usize { fn size() -> usize {
// Utiliser l'espace d'actions compactes pour réduire la complexité 1252
// Maximum estimé basé sur les actions contextuelles
1000 // Estimation conservative, sera ajusté dynamiquement
} }
} }
@ -205,8 +204,8 @@ impl TrictracEnvironment {
&self, &self,
action: TrictracAction, action: TrictracAction,
game_state: &GameState, game_state: &GameState,
) -> Option<super::dqn_common::TrictracAction> { ) -> Option<dqn_common::TrictracAction> {
use super::dqn_common::get_valid_actions; use dqn_common::get_valid_actions;
// Obtenir les actions valides dans le contexte actuel // Obtenir les actions valides dans le contexte actuel
let valid_actions = get_valid_actions(game_state); let valid_actions = get_valid_actions(game_state);
@ -223,9 +222,9 @@ impl TrictracEnvironment {
/// Exécute une action Trictrac dans le jeu /// Exécute une action Trictrac dans le jeu
fn execute_action( fn execute_action(
&mut self, &mut self,
action: super::dqn_common::TrictracAction, action: dqn_common::TrictracAction,
) -> Result<f32, Box<dyn std::error::Error>> { ) -> Result<f32, Box<dyn std::error::Error>> {
use super::dqn_common::TrictracAction; use dqn_common::TrictracAction;
let mut reward = 0.0; let mut reward = 0.0;
@ -320,7 +319,7 @@ impl TrictracEnvironment {
// Si c'est le tour de l'adversaire, jouer automatiquement // Si c'est le tour de l'adversaire, jouer automatiquement
if self.game.active_player_id == self.opponent_id && self.game.stage != Stage::Ended { if self.game.active_player_id == self.opponent_id && self.game.stage != Stage::Ended {
// Utiliser la stratégie default pour l'adversaire // Utiliser la stratégie default pour l'adversaire
use super::default::DefaultStrategy; use crate::strategy::default::DefaultStrategy;
use crate::BotStrategy; use crate::BotStrategy;
let mut default_strategy = DefaultStrategy::default(); let mut default_strategy = DefaultStrategy::default();

16
bot/src/burnrl/main.rs Normal file
View file

@ -0,0 +1,16 @@
use burn::backend::{Autodiff, NdArray};
use burn_rl::base::ElemType;
use bot::burnrl::{
dqn_model,
environment,
utils::demo_model,
};
type Backend = Autodiff<NdArray<ElemType>>;
type Env = environment::TrictracEnvironment;
fn main() {
let agent = dqn_model::run::<Env, Backend>(512, false); //true);
demo_model::<Env>(agent);
}

3
bot/src/burnrl/mod.rs Normal file
View file

@ -0,0 +1,3 @@
pub mod dqn_model;
pub mod environment;
pub mod utils;

44
bot/src/burnrl/utils.rs Normal file
View file

@ -0,0 +1,44 @@
use burn::module::{Param, ParamId};
use burn::nn::Linear;
use burn::tensor::backend::Backend;
use burn::tensor::Tensor;
use burn_rl::base::{Agent, ElemType, Environment};
pub fn demo_model<E: Environment>(agent: impl Agent<E>) {
let mut env = E::new(true);
let mut state = env.state();
let mut done = false;
while !done {
if let Some(action) = agent.react(&state) {
let snapshot = env.step(action);
state = *snapshot.state();
done = snapshot.done();
}
}
}
fn soft_update_tensor<const N: usize, B: Backend>(
this: &Param<Tensor<B, N>>,
that: &Param<Tensor<B, N>>,
tau: ElemType,
) -> Param<Tensor<B, N>> {
let that_weight = that.val();
let this_weight = this.val();
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
Param::initialized(ParamId::new(), new_weight)
}
pub fn soft_update_linear<B: Backend>(
this: Linear<B>,
that: &Linear<B>,
tau: ElemType,
) -> Linear<B> {
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
let bias = match (&this.bias, &that.bias) {
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
_ => None,
};
Linear::<B> { weight, bias }
}

View file

@ -1,7 +1,8 @@
pub mod burnrl;
pub mod strategy; pub mod strategy;
use store::{CheckerMove, Color, GameEvent, GameState, PlayerId, PointsRules, Stage, TurnStage}; use store::{CheckerMove, Color, GameEvent, GameState, PlayerId, PointsRules, Stage, TurnStage};
pub use strategy::burn_dqn_strategy::{BurnDqnStrategy, create_burn_dqn_strategy}; pub use strategy::burn_dqn_strategy::{create_burn_dqn_strategy, BurnDqnStrategy};
pub use strategy::default::DefaultStrategy; pub use strategy::default::DefaultStrategy;
pub use strategy::dqn::DqnStrategy; pub use strategy::dqn::DqnStrategy;
pub use strategy::erroneous_moves::ErroneousStrategy; pub use strategy::erroneous_moves::ErroneousStrategy;

View file

@ -1,6 +1,5 @@
pub mod burn_dqn_agent; pub mod burn_dqn_agent;
pub mod burn_dqn_strategy; pub mod burn_dqn_strategy;
pub mod burn_environment;
pub mod client; pub mod client;
pub mod default; pub mod default;
pub mod dqn; pub mod dqn;