refacto: burnrl
This commit is contained in:
parent
97167ff389
commit
18e85744d6
|
|
@ -5,6 +5,10 @@ edition = "2021"
|
|||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[[bin]]
|
||||
name = "burn_demo"
|
||||
path = "src/burnrl/main.rs"
|
||||
|
||||
[[bin]]
|
||||
name = "train_dqn_burn_valid"
|
||||
path = "src/burnrl/dqn_valid/main.rs"
|
||||
|
|
|
|||
|
|
@ -1,54 +0,0 @@
|
|||
use bot::burnrl::dqn::{
|
||||
dqn_model,
|
||||
utils::{demo_model, load_model, save_model},
|
||||
};
|
||||
use bot::burnrl::environment;
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::DQN;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = environment::TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in dqn_model.rs : 8192
|
||||
let conf = dqn_model::DqnConfig {
|
||||
// defaults
|
||||
num_episodes: 50, // 40
|
||||
min_steps: 1000.0, // 1000 min of max steps by episode (mise à jour par la fonction)
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 256, // 128 neural network complexity (default 128)
|
||||
eps_start: 0.9, // 0.9 epsilon initial value (0.9 => more exploration)
|
||||
eps_end: 0.05, // 0.05
|
||||
// eps_decay higher = epsilon decrease slower
|
||||
// used in : epsilon = eps_end + (eps_start - eps_end) * e^(-step / eps_decay);
|
||||
// epsilon is updated at the start of each episode
|
||||
eps_decay: 2000.0, // 1000 ?
|
||||
|
||||
gamma: 0.9999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
tau: 0.0005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 128, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 70.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
};
|
||||
println!("{conf}----------");
|
||||
let agent = dqn_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
let valid_agent = agent.valid();
|
||||
|
||||
println!("> Sauvegarde du modèle de validation");
|
||||
|
||||
let path = "bot/models/burnrl_dqn".to_string();
|
||||
save_model(valid_agent.model().as_ref().unwrap(), &path);
|
||||
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = load_model(conf.dense_size, &path);
|
||||
let loaded_agent = DQN::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
pub mod dqn_model;
|
||||
pub mod utils;
|
||||
|
|
@ -1,112 +0,0 @@
|
|||
use crate::burnrl::dqn::dqn_model;
|
||||
use crate::burnrl::environment::{TrictracAction, TrictracEnvironment};
|
||||
use crate::training_common::get_valid_action_indices;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::{Module, Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::cast::ToElement;
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{DQNModel, DQN};
|
||||
use burn_rl::base::{Action, ElemType, Environment, State};
|
||||
|
||||
pub fn save_model(model: &dqn_model::Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<dqn_model::Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
dqn_model::Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
pub fn demo_model<B: Backend, M: DQNModel<B>>(agent: DQN<TrictracEnvironment, B, M>) {
|
||||
let mut env = TrictracEnvironment::new(true);
|
||||
let mut done = false;
|
||||
while !done {
|
||||
// let action = match infer_action(&agent, &env, state) {
|
||||
let action = match infer_action(&agent, &env) {
|
||||
Some(value) => value,
|
||||
None => break,
|
||||
};
|
||||
// Execute action
|
||||
let snapshot = env.step(action);
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_action<B: Backend, M: DQNModel<B>>(
|
||||
agent: &DQN<TrictracEnvironment, B, M>,
|
||||
env: &TrictracEnvironment,
|
||||
) -> Option<TrictracAction> {
|
||||
let state = env.state();
|
||||
// Get q-values
|
||||
let q_values = agent
|
||||
.model()
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.infer(state.to_tensor().unsqueeze());
|
||||
// Get valid actions
|
||||
let valid_actions_indices = get_valid_action_indices(&env.game);
|
||||
if valid_actions_indices.is_empty() {
|
||||
return None; // No valid actions, end of episode
|
||||
}
|
||||
// Set non valid actions q-values to lowest
|
||||
let mut masked_q_values = q_values.clone();
|
||||
let q_values_vec: Vec<f32> = q_values.into_data().into_vec().unwrap();
|
||||
for (index, q_value) in q_values_vec.iter().enumerate() {
|
||||
if !valid_actions_indices.contains(&index) {
|
||||
masked_q_values = masked_q_values.clone().mask_fill(
|
||||
masked_q_values.clone().equal_elem(*q_value),
|
||||
f32::NEG_INFINITY,
|
||||
);
|
||||
}
|
||||
}
|
||||
// Get best action (highest q-value)
|
||||
let action_index = masked_q_values.argmax(1).into_scalar().to_u32();
|
||||
let action = TrictracAction::from(action_index);
|
||||
Some(action)
|
||||
}
|
||||
|
||||
fn soft_update_tensor<const N: usize, B: Backend>(
|
||||
this: &Param<Tensor<B, N>>,
|
||||
that: &Param<Tensor<B, N>>,
|
||||
tau: ElemType,
|
||||
) -> Param<Tensor<B, N>> {
|
||||
let that_weight = that.val();
|
||||
let this_weight = this.val();
|
||||
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
|
||||
|
||||
Param::initialized(ParamId::new(), new_weight)
|
||||
}
|
||||
|
||||
pub fn soft_update_linear<B: Backend>(
|
||||
this: Linear<B>,
|
||||
that: &Linear<B>,
|
||||
tau: ElemType,
|
||||
) -> Linear<B> {
|
||||
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
|
||||
let bias = match (&this.bias, &that.bias) {
|
||||
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
Linear::<B> { weight, bias }
|
||||
}
|
||||
|
|
@ -1,54 +0,0 @@
|
|||
use bot::burnrl::dqn_big::{
|
||||
dqn_model,
|
||||
utils::{demo_model, load_model, save_model},
|
||||
};
|
||||
use bot::burnrl::environment_big;
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::DQN;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = environment_big::TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in dqn_model.rs : 8192
|
||||
let conf = dqn_model::DqnConfig {
|
||||
// defaults
|
||||
num_episodes: 40, // 40
|
||||
min_steps: 2000.0, // 1000 min of max steps by episode (mise à jour par la fonction)
|
||||
max_steps: 4000, // 1000 max steps by episode
|
||||
dense_size: 128, // 128 neural network complexity (default 128)
|
||||
eps_start: 0.9, // 0.9 epsilon initial value (0.9 => more exploration)
|
||||
eps_end: 0.05, // 0.05
|
||||
// eps_decay higher = epsilon decrease slower
|
||||
// used in : epsilon = eps_end + (eps_start - eps_end) * e^(-step / eps_decay);
|
||||
// epsilon is updated at the start of each episode
|
||||
eps_decay: 1000.0, // 1000 ?
|
||||
|
||||
gamma: 0.999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
tau: 0.005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 32, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 100.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
};
|
||||
println!("{conf}----------");
|
||||
let agent = dqn_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
let valid_agent = agent.valid();
|
||||
|
||||
println!("> Sauvegarde du modèle de validation");
|
||||
|
||||
let path = "models/burn_dqn_40".to_string();
|
||||
save_model(valid_agent.model().as_ref().unwrap(), &path);
|
||||
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = load_model(conf.dense_size, &path);
|
||||
let loaded_agent = DQN::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
pub mod dqn_model;
|
||||
pub mod utils;
|
||||
|
|
@ -1,112 +0,0 @@
|
|||
use crate::burnrl::dqn_big::dqn_model;
|
||||
use crate::burnrl::environment_big::{TrictracAction, TrictracEnvironment};
|
||||
use crate::training_common_big::get_valid_action_indices;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::{Module, Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::cast::ToElement;
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{DQNModel, DQN};
|
||||
use burn_rl::base::{Action, ElemType, Environment, State};
|
||||
|
||||
pub fn save_model(model: &dqn_model::Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}_model.mpk");
|
||||
println!("Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<dqn_model::Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}_model.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
dqn_model::Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
pub fn demo_model<B: Backend, M: DQNModel<B>>(agent: DQN<TrictracEnvironment, B, M>) {
|
||||
let mut env = TrictracEnvironment::new(true);
|
||||
let mut done = false;
|
||||
while !done {
|
||||
// let action = match infer_action(&agent, &env, state) {
|
||||
let action = match infer_action(&agent, &env) {
|
||||
Some(value) => value,
|
||||
None => break,
|
||||
};
|
||||
// Execute action
|
||||
let snapshot = env.step(action);
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_action<B: Backend, M: DQNModel<B>>(
|
||||
agent: &DQN<TrictracEnvironment, B, M>,
|
||||
env: &TrictracEnvironment,
|
||||
) -> Option<TrictracAction> {
|
||||
let state = env.state();
|
||||
// Get q-values
|
||||
let q_values = agent
|
||||
.model()
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.infer(state.to_tensor().unsqueeze());
|
||||
// Get valid actions
|
||||
let valid_actions_indices = get_valid_action_indices(&env.game);
|
||||
if valid_actions_indices.is_empty() {
|
||||
return None; // No valid actions, end of episode
|
||||
}
|
||||
// Set non valid actions q-values to lowest
|
||||
let mut masked_q_values = q_values.clone();
|
||||
let q_values_vec: Vec<f32> = q_values.into_data().into_vec().unwrap();
|
||||
for (index, q_value) in q_values_vec.iter().enumerate() {
|
||||
if !valid_actions_indices.contains(&index) {
|
||||
masked_q_values = masked_q_values.clone().mask_fill(
|
||||
masked_q_values.clone().equal_elem(*q_value),
|
||||
f32::NEG_INFINITY,
|
||||
);
|
||||
}
|
||||
}
|
||||
// Get best action (highest q-value)
|
||||
let action_index = masked_q_values.argmax(1).into_scalar().to_u32();
|
||||
let action = TrictracAction::from(action_index);
|
||||
Some(action)
|
||||
}
|
||||
|
||||
fn soft_update_tensor<const N: usize, B: Backend>(
|
||||
this: &Param<Tensor<B, N>>,
|
||||
that: &Param<Tensor<B, N>>,
|
||||
tau: ElemType,
|
||||
) -> Param<Tensor<B, N>> {
|
||||
let that_weight = that.val();
|
||||
let this_weight = this.val();
|
||||
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
|
||||
|
||||
Param::initialized(ParamId::new(), new_weight)
|
||||
}
|
||||
|
||||
pub fn soft_update_linear<B: Backend>(
|
||||
this: Linear<B>,
|
||||
that: &Linear<B>,
|
||||
tau: ElemType,
|
||||
) -> Linear<B> {
|
||||
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
|
||||
let bias = match (&this.bias, &that.bias) {
|
||||
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
Linear::<B> { weight, bias }
|
||||
}
|
||||
|
|
@ -1,15 +1,16 @@
|
|||
use crate::burnrl::dqn_valid::utils::soft_update_linear;
|
||||
use crate::burnrl::environment::TrictracEnvironment;
|
||||
use crate::burnrl::environment_big::TrictracEnvironment;
|
||||
use crate::burnrl::utils::{soft_update_linear, Config};
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::relu;
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::DQN;
|
||||
use burn_rl::agent::{DQNModel, DQNTrainingConfig};
|
||||
use burn_rl::base::{Action, ElemType, Environment, Memory, Model, State};
|
||||
use std::fmt;
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
|
|
@ -62,66 +63,18 @@ impl<B: Backend> DQNModel<B> for Net<B> {
|
|||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 8192;
|
||||
|
||||
pub struct DqnConfig {
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
pub eps_start: f64,
|
||||
pub eps_end: f64,
|
||||
pub eps_decay: f64,
|
||||
|
||||
pub gamma: f32,
|
||||
pub tau: f32,
|
||||
pub learning_rate: f32,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
}
|
||||
|
||||
impl fmt::Display for DqnConfig {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("eps_start={:?}\n", self.eps_start));
|
||||
s.push_str(&format!("eps_end={:?}\n", self.eps_end));
|
||||
s.push_str(&format!("eps_decay={:?}\n", self.eps_decay));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("tau={:?}\n", self.tau));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
s.push_str(&format!("clip_grad={:?}\n", self.clip_grad));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for DqnConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 256,
|
||||
eps_start: 0.9,
|
||||
eps_end: 0.05,
|
||||
eps_decay: 1000.0,
|
||||
|
||||
gamma: 0.999,
|
||||
tau: 0.005,
|
||||
learning_rate: 0.001,
|
||||
batch_size: 32,
|
||||
clip_grad: 100.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type MyAgent<E, B> = DQN<E, B, Net<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
conf: &DqnConfig,
|
||||
// pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
) -> DQN<E, B, Net<B>> {
|
||||
// ) -> impl Agent<E> {
|
||||
// ) -> DQN<E, B, Net<B>> {
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
|
||||
|
|
@ -189,8 +142,13 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
|
||||
if snapshot.done() || episode_duration >= conf.max_steps {
|
||||
let envmut = env.as_mut();
|
||||
let goodmoves_ratio = ((envmut.goodmoves_count as f32 / episode_duration as f32)
|
||||
* 100.0)
|
||||
.round() as u32;
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"epsilon\": {eps_threshold:.3}, \"rollpoints\":{}, \"duration\": {}}}",
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"epsilon\": {eps_threshold:.3}, \"goodmoves\": {}, \"ratio\": {}%, \"rollpoints\":{}, \"duration\": {}}}",
|
||||
envmut.goodmoves_count,
|
||||
goodmoves_ratio,
|
||||
envmut.pointrolls_count,
|
||||
now.elapsed().unwrap().as_secs(),
|
||||
);
|
||||
|
|
@ -202,5 +160,35 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
}
|
||||
}
|
||||
}
|
||||
agent
|
||||
let valid_agent = agent.valid();
|
||||
if let Some(path) = &conf.save_path {
|
||||
save_model(valid_agent.model().as_ref().unwrap(), path);
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
|
@ -1,15 +1,16 @@
|
|||
use crate::burnrl::dqn::utils::soft_update_linear;
|
||||
use crate::burnrl::environment::TrictracEnvironment;
|
||||
use crate::burnrl::utils::{soft_update_linear, Config};
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::relu;
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::DQN;
|
||||
use burn_rl::agent::{DQNModel, DQNTrainingConfig};
|
||||
use burn_rl::base::{Action, ElemType, Environment, Memory, Model, State};
|
||||
use std::fmt;
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
|
|
@ -62,69 +63,18 @@ impl<B: Backend> DQNModel<B> for Net<B> {
|
|||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 8192;
|
||||
|
||||
pub struct DqnConfig {
|
||||
pub min_steps: f32,
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
pub eps_start: f64,
|
||||
pub eps_end: f64,
|
||||
pub eps_decay: f64,
|
||||
|
||||
pub gamma: f32,
|
||||
pub tau: f32,
|
||||
pub learning_rate: f32,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
}
|
||||
|
||||
impl fmt::Display for DqnConfig {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("min_steps={:?}\n", self.min_steps));
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("eps_start={:?}\n", self.eps_start));
|
||||
s.push_str(&format!("eps_end={:?}\n", self.eps_end));
|
||||
s.push_str(&format!("eps_decay={:?}\n", self.eps_decay));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("tau={:?}\n", self.tau));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
s.push_str(&format!("clip_grad={:?}\n", self.clip_grad));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for DqnConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
min_steps: 250.0,
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 256,
|
||||
eps_start: 0.9,
|
||||
eps_end: 0.05,
|
||||
eps_decay: 1000.0,
|
||||
|
||||
gamma: 0.999,
|
||||
tau: 0.005,
|
||||
learning_rate: 0.001,
|
||||
batch_size: 32,
|
||||
clip_grad: 100.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type MyAgent<E, B> = DQN<E, B, Net<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
conf: &DqnConfig,
|
||||
// pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
) -> DQN<E, B, Net<B>> {
|
||||
// ) -> impl Agent<E> {
|
||||
// ) -> DQN<E, B, Net<B>> {
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
// env.as_mut().min_steps = conf.min_steps;
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
|
|
@ -203,7 +153,6 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
envmut.pointrolls_count,
|
||||
now.elapsed().unwrap().as_secs(),
|
||||
);
|
||||
if goodmoves_ratio < 5 && 10 < episode {}
|
||||
env.reset();
|
||||
episode_done = true;
|
||||
now = SystemTime::now();
|
||||
|
|
@ -212,5 +161,35 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
}
|
||||
}
|
||||
}
|
||||
agent
|
||||
let valid_agent = agent.valid();
|
||||
if let Some(path) = &conf.save_path {
|
||||
save_model(valid_agent.model().as_ref().unwrap(), path);
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
|
@ -1,53 +0,0 @@
|
|||
use bot::burnrl::dqn_valid::{
|
||||
dqn_model,
|
||||
utils::{demo_model, load_model, save_model},
|
||||
};
|
||||
use bot::burnrl::environment;
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::DQN;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = environment::TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in dqn_model.rs : 8192
|
||||
let conf = dqn_model::DqnConfig {
|
||||
// defaults
|
||||
num_episodes: 100, // 40
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 256, // 128 neural network complexity (default 128)
|
||||
eps_start: 0.9, // 0.9 epsilon initial value (0.9 => more exploration)
|
||||
eps_end: 0.05, // 0.05
|
||||
// eps_decay higher = epsilon decrease slower
|
||||
// used in : epsilon = eps_end + (eps_start - eps_end) * e^(-step / eps_decay);
|
||||
// epsilon is updated at the start of each episode
|
||||
eps_decay: 2000.0, // 1000 ?
|
||||
|
||||
gamma: 0.999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
tau: 0.005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 32, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 100.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
};
|
||||
println!("{conf}----------");
|
||||
let agent = dqn_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
let valid_agent = agent.valid();
|
||||
|
||||
println!("> Sauvegarde du modèle de validation");
|
||||
|
||||
let path = "bot/models/burn_dqn_valid_40".to_string();
|
||||
save_model(valid_agent.model().as_ref().unwrap(), &path);
|
||||
|
||||
println!("> Chargement du modèle pour test");
|
||||
let loaded_model = load_model(conf.dense_size, &path);
|
||||
let loaded_agent = DQN::new(loaded_model.unwrap());
|
||||
|
||||
println!("> Test avec le modèle chargé");
|
||||
demo_model(loaded_agent);
|
||||
}
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
pub mod dqn_model;
|
||||
pub mod utils;
|
||||
|
|
@ -1,112 +0,0 @@
|
|||
use crate::burnrl::dqn_valid::dqn_model;
|
||||
use crate::burnrl::environment_valid::{TrictracAction, TrictracEnvironment};
|
||||
use crate::training_common::get_valid_action_indices;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::{Module, Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::cast::ToElement;
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{DQNModel, DQN};
|
||||
use burn_rl::base::{Action, ElemType, Environment, State};
|
||||
|
||||
pub fn save_model(model: &dqn_model::Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}_model.mpk");
|
||||
println!("Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<dqn_model::Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}_model.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
dqn_model::Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
pub fn demo_model<B: Backend, M: DQNModel<B>>(agent: DQN<TrictracEnvironment, B, M>) {
|
||||
let mut env = TrictracEnvironment::new(true);
|
||||
let mut done = false;
|
||||
while !done {
|
||||
// let action = match infer_action(&agent, &env, state) {
|
||||
let action = match infer_action(&agent, &env) {
|
||||
Some(value) => value,
|
||||
None => break,
|
||||
};
|
||||
// Execute action
|
||||
let snapshot = env.step(action);
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_action<B: Backend, M: DQNModel<B>>(
|
||||
agent: &DQN<TrictracEnvironment, B, M>,
|
||||
env: &TrictracEnvironment,
|
||||
) -> Option<TrictracAction> {
|
||||
let state = env.state();
|
||||
// Get q-values
|
||||
let q_values = agent
|
||||
.model()
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.infer(state.to_tensor().unsqueeze());
|
||||
// Get valid actions
|
||||
let valid_actions_indices = get_valid_action_indices(&env.game);
|
||||
if valid_actions_indices.is_empty() {
|
||||
return None; // No valid actions, end of episode
|
||||
}
|
||||
// Set non valid actions q-values to lowest
|
||||
let mut masked_q_values = q_values.clone();
|
||||
let q_values_vec: Vec<f32> = q_values.into_data().into_vec().unwrap();
|
||||
for (index, q_value) in q_values_vec.iter().enumerate() {
|
||||
if !valid_actions_indices.contains(&index) {
|
||||
masked_q_values = masked_q_values.clone().mask_fill(
|
||||
masked_q_values.clone().equal_elem(*q_value),
|
||||
f32::NEG_INFINITY,
|
||||
);
|
||||
}
|
||||
}
|
||||
// Get best action (highest q-value)
|
||||
let action_index = masked_q_values.argmax(1).into_scalar().to_u32();
|
||||
let action = TrictracAction::from(action_index);
|
||||
Some(action)
|
||||
}
|
||||
|
||||
fn soft_update_tensor<const N: usize, B: Backend>(
|
||||
this: &Param<Tensor<B, N>>,
|
||||
that: &Param<Tensor<B, N>>,
|
||||
tau: ElemType,
|
||||
) -> Param<Tensor<B, N>> {
|
||||
let that_weight = that.val();
|
||||
let this_weight = this.val();
|
||||
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
|
||||
|
||||
Param::initialized(ParamId::new(), new_weight)
|
||||
}
|
||||
|
||||
pub fn soft_update_linear<B: Backend>(
|
||||
this: Linear<B>,
|
||||
that: &Linear<B>,
|
||||
tau: ElemType,
|
||||
) -> Linear<B> {
|
||||
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
|
||||
let bias = match (&this.bias, &that.bias) {
|
||||
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
Linear::<B> { weight, bias }
|
||||
}
|
||||
|
|
@ -1,15 +1,16 @@
|
|||
use crate::burnrl::dqn_big::utils::soft_update_linear;
|
||||
use crate::burnrl::environment_big::TrictracEnvironment;
|
||||
use crate::burnrl::environment_valid::TrictracEnvironment;
|
||||
use crate::burnrl::utils::{soft_update_linear, Config};
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::relu;
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::DQN;
|
||||
use burn_rl::agent::{DQNModel, DQNTrainingConfig};
|
||||
use burn_rl::base::{Action, ElemType, Environment, Memory, Model, State};
|
||||
use std::fmt;
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
|
|
@ -62,71 +63,19 @@ impl<B: Backend> DQNModel<B> for Net<B> {
|
|||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 8192;
|
||||
|
||||
pub struct DqnConfig {
|
||||
pub min_steps: f32,
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
pub eps_start: f64,
|
||||
pub eps_end: f64,
|
||||
pub eps_decay: f64,
|
||||
|
||||
pub gamma: f32,
|
||||
pub tau: f32,
|
||||
pub learning_rate: f32,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
}
|
||||
|
||||
impl fmt::Display for DqnConfig {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("min_steps={:?}\n", self.min_steps));
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("eps_start={:?}\n", self.eps_start));
|
||||
s.push_str(&format!("eps_end={:?}\n", self.eps_end));
|
||||
s.push_str(&format!("eps_decay={:?}\n", self.eps_decay));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("tau={:?}\n", self.tau));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
s.push_str(&format!("clip_grad={:?}\n", self.clip_grad));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for DqnConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
min_steps: 250.0,
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 256,
|
||||
eps_start: 0.9,
|
||||
eps_end: 0.05,
|
||||
eps_decay: 1000.0,
|
||||
|
||||
gamma: 0.999,
|
||||
tau: 0.005,
|
||||
learning_rate: 0.001,
|
||||
batch_size: 32,
|
||||
clip_grad: 100.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type MyAgent<E, B> = DQN<E, B, Net<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
conf: &DqnConfig,
|
||||
// pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
pub fn run<
|
||||
E: Environment + AsMut<TrictracEnvironment>,
|
||||
B: AutodiffBackend<InnerBackend = NdArray>,
|
||||
>(
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
) -> DQN<E, B, Net<B>> {
|
||||
// ) -> impl Agent<E> {
|
||||
// ) -> DQN<E, B, Net<B>> {
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
env.as_mut().min_steps = conf.min_steps;
|
||||
env.as_mut().max_steps = conf.max_steps;
|
||||
|
||||
let model = Net::<B>::new(
|
||||
|
|
@ -194,8 +143,7 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
if snapshot.done() || episode_duration >= conf.max_steps {
|
||||
let envmut = env.as_mut();
|
||||
println!(
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"epsilon\": {eps_threshold:.3}, \"goodmoves\": {}, \"rollpoints\":{}, \"duration\": {}}}",
|
||||
envmut.goodmoves_count,
|
||||
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"epsilon\": {eps_threshold:.3}, \"rollpoints\":{}, \"duration\": {}}}",
|
||||
envmut.pointrolls_count,
|
||||
now.elapsed().unwrap().as_secs(),
|
||||
);
|
||||
|
|
@ -207,5 +155,35 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
}
|
||||
}
|
||||
}
|
||||
agent
|
||||
let valid_agent = agent.valid();
|
||||
if let Some(path) = &conf.save_path {
|
||||
save_model(valid_agent.model().as_ref().unwrap(), path);
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
||||
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
|
@ -139,6 +139,7 @@ impl Environment for TrictracEnvironment {
|
|||
|
||||
fn reset(&mut self) -> Snapshot<Self> {
|
||||
// Réinitialiser le jeu
|
||||
let history = self.game.history.clone();
|
||||
self.game = GameState::new(false);
|
||||
self.game.init_player("DQN Agent");
|
||||
self.game.init_player("Opponent");
|
||||
|
|
@ -157,18 +158,18 @@ impl Environment for TrictracEnvironment {
|
|||
let warning = if self.best_ratio > 0.7 && self.goodmoves_ratio < 0.1 {
|
||||
let path = "bot/models/logs/debug.log";
|
||||
if let Ok(mut out) = std::fs::File::create(path) {
|
||||
write!(out, "{:?}", self.game.history);
|
||||
write!(out, "{:?}", history);
|
||||
}
|
||||
"!!!!"
|
||||
} else {
|
||||
""
|
||||
};
|
||||
println!(
|
||||
"info: correct moves: {} ({}%) {}",
|
||||
self.goodmoves_count,
|
||||
(100.0 * self.goodmoves_ratio).round() as u32,
|
||||
warning
|
||||
);
|
||||
// println!(
|
||||
// "info: correct moves: {} ({}%) {}",
|
||||
// self.goodmoves_count,
|
||||
// (100.0 * self.goodmoves_ratio).round() as u32,
|
||||
// warning
|
||||
// );
|
||||
self.step_count = 0;
|
||||
self.pointrolls_count = 0;
|
||||
self.goodmoves_count = 0;
|
||||
|
|
@ -369,7 +370,7 @@ impl TrictracEnvironment {
|
|||
if self.game.validate(&dice_event) {
|
||||
self.game.consume(&dice_event);
|
||||
let (points, adv_points) = self.game.dice_points;
|
||||
reward += REWARD_RATIO * (points - adv_points) as f32;
|
||||
reward += REWARD_RATIO * (points as f32 - adv_points as f32);
|
||||
if points > 0 {
|
||||
is_rollpoint = true;
|
||||
// println!("info: rolled for {reward}");
|
||||
|
|
@ -479,7 +480,7 @@ impl TrictracEnvironment {
|
|||
PointsRules::new(&opponent_color, &self.game.board, self.game.dice);
|
||||
let (points, adv_points) = points_rules.get_points(dice_roll_count);
|
||||
// Récompense proportionnelle aux points
|
||||
reward -= REWARD_RATIO * (points - adv_points) as f32;
|
||||
reward -= REWARD_RATIO * (points as f32 - adv_points as f32);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -89,7 +89,6 @@ pub struct TrictracEnvironment {
|
|||
current_state: TrictracState,
|
||||
episode_reward: f32,
|
||||
pub step_count: usize,
|
||||
pub min_steps: f32,
|
||||
pub max_steps: usize,
|
||||
pub pointrolls_count: usize,
|
||||
pub goodmoves_count: usize,
|
||||
|
|
@ -122,7 +121,6 @@ impl Environment for TrictracEnvironment {
|
|||
current_state,
|
||||
episode_reward: 0.0,
|
||||
step_count: 0,
|
||||
min_steps: 250.0,
|
||||
max_steps: 2000,
|
||||
pointrolls_count: 0,
|
||||
goodmoves_count: 0,
|
||||
|
|
@ -196,9 +194,10 @@ impl Environment for TrictracEnvironment {
|
|||
}
|
||||
|
||||
// Vérifier si la partie est terminée
|
||||
let max_steps = self.min_steps
|
||||
+ (self.max_steps as f32 - self.min_steps)
|
||||
* f32::exp((self.goodmoves_ratio - 1.0) / 0.25);
|
||||
// let max_steps = self.max_steps
|
||||
// let max_steps = self.min_steps
|
||||
// + (self.max_steps as f32 - self.min_steps)
|
||||
// * f32::exp((self.goodmoves_ratio - 1.0) / 0.25);
|
||||
let done = self.game.stage == Stage::Ended || self.game.determine_winner().is_some();
|
||||
|
||||
if done {
|
||||
|
|
@ -211,7 +210,7 @@ impl Environment for TrictracEnvironment {
|
|||
}
|
||||
}
|
||||
}
|
||||
let terminated = done || self.step_count >= max_steps.round() as usize;
|
||||
let terminated = done || self.step_count >= self.max_steps;
|
||||
|
||||
// Mettre à jour l'état
|
||||
self.current_state = TrictracState::from_game_state(&self.game);
|
||||
|
|
|
|||
58
bot/src/burnrl/main.rs
Normal file
58
bot/src/burnrl/main.rs
Normal file
|
|
@ -0,0 +1,58 @@
|
|||
use bot::burnrl::sac_model as burn_model;
|
||||
// use bot::burnrl::dqn_big_model as burn_model;
|
||||
// use bot::burnrl::dqn_model as burn_model;
|
||||
// use bot::burnrl::environment_big::TrictracEnvironment;
|
||||
use bot::burnrl::environment::TrictracEnvironment;
|
||||
use bot::burnrl::utils::{demo_model, Config};
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::SAC as MyAgent;
|
||||
// use burn_rl::agent::DQN as MyAgent;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
let path = "bot/models/burnrl_dqn".to_string();
|
||||
let conf = Config {
|
||||
save_path: Some(path.clone()),
|
||||
num_episodes: 30, // 40
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 256, // 128 neural network complexity (default 128)
|
||||
|
||||
gamma: 0.9999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
tau: 0.0005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 128, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 70.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
|
||||
min_probability: 1e-9,
|
||||
|
||||
eps_start: 0.9, // 0.9 epsilon initial value (0.9 => more exploration)
|
||||
eps_end: 0.05, // 0.05
|
||||
// eps_decay higher = epsilon decrease slower
|
||||
// used in : epsilon = eps_end + (eps_start - eps_end) * e^(-step / eps_decay);
|
||||
// epsilon is updated at the start of each episode
|
||||
eps_decay: 2000.0, // 1000 ?
|
||||
|
||||
lambda: 0.95,
|
||||
epsilon_clip: 0.2,
|
||||
critic_weight: 0.5,
|
||||
entropy_weight: 0.01,
|
||||
epochs: 8,
|
||||
};
|
||||
println!("{conf}----------");
|
||||
|
||||
let agent = burn_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
// println!("> Chargement du modèle pour test");
|
||||
// let loaded_model = burn_model::load_model(conf.dense_size, &path);
|
||||
// let loaded_agent: MyAgent<Env, _, _> = MyAgent::new(loaded_model.unwrap());
|
||||
//
|
||||
// println!("> Test avec le modèle chargé");
|
||||
// demo_model(loaded_agent);
|
||||
|
||||
// demo_model::<Env>(agent);
|
||||
}
|
||||
|
|
@ -1,8 +1,9 @@
|
|||
pub mod dqn;
|
||||
pub mod dqn_big;
|
||||
pub mod dqn_valid;
|
||||
pub mod dqn_big_model;
|
||||
pub mod dqn_model;
|
||||
pub mod dqn_valid_model;
|
||||
pub mod environment;
|
||||
pub mod environment_big;
|
||||
pub mod environment_valid;
|
||||
pub mod ppo;
|
||||
pub mod sac;
|
||||
pub mod ppo_model;
|
||||
pub mod sac_model;
|
||||
pub mod utils;
|
||||
|
|
|
|||
|
|
@ -1,52 +0,0 @@
|
|||
use bot::burnrl::environment;
|
||||
use bot::burnrl::ppo::{
|
||||
ppo_model,
|
||||
utils::{demo_model, load_model, save_model},
|
||||
};
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::PPO;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = environment::TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in ppo_model.rs : 8192
|
||||
let conf = ppo_model::PpoConfig {
|
||||
// defaults
|
||||
num_episodes: 50, // 40
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 128, // 128 neural network complexity (default 128)
|
||||
gamma: 0.999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 128, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 100.0, // 100 limite max de correction à apporter au gradient (default 100)
|
||||
|
||||
lambda: 0.95,
|
||||
epsilon_clip: 0.2,
|
||||
critic_weight: 0.5,
|
||||
entropy_weight: 0.01,
|
||||
epochs: 8,
|
||||
};
|
||||
println!("{conf}----------");
|
||||
let valid_agent = ppo_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
// let valid_agent = agent.valid(model);
|
||||
|
||||
println!("> Sauvegarde du modèle de validation");
|
||||
|
||||
let path = "bot/models/burnrl_ppo".to_string();
|
||||
panic!("how to do that : save model");
|
||||
// save_model(valid_agent.model().as_ref().unwrap(), &path);
|
||||
|
||||
// println!("> Chargement du modèle pour test");
|
||||
// let loaded_model = load_model(conf.dense_size, &path);
|
||||
// let loaded_agent = PPO::new(loaded_model.unwrap());
|
||||
//
|
||||
// println!("> Test avec le modèle chargé");
|
||||
// demo_model(loaded_agent);
|
||||
}
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
pub mod ppo_model;
|
||||
pub mod utils;
|
||||
|
|
@ -1,88 +0,0 @@
|
|||
use crate::burnrl::environment::{TrictracAction, TrictracEnvironment};
|
||||
use crate::burnrl::ppo::ppo_model;
|
||||
use crate::training_common::get_valid_action_indices;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::{Module, Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::cast::ToElement;
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{PPOModel, PPO};
|
||||
use burn_rl::base::{Action, ElemType, Environment, State};
|
||||
|
||||
pub fn save_model(model: &ppo_model::Net<NdArray<ElemType>>, path: &String) {
|
||||
let recorder = CompactRecorder::new();
|
||||
let model_path = format!("{path}.mpk");
|
||||
println!("Modèle de validation sauvegardé : {model_path}");
|
||||
recorder
|
||||
.record(model.clone().into_record(), model_path.into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn load_model(dense_size: usize, path: &String) -> Option<ppo_model::Net<NdArray<ElemType>>> {
|
||||
let model_path = format!("{path}.mpk");
|
||||
// println!("Chargement du modèle depuis : {model_path}");
|
||||
|
||||
CompactRecorder::new()
|
||||
.load(model_path.into(), &NdArrayDevice::default())
|
||||
.map(|record| {
|
||||
ppo_model::Net::new(
|
||||
<TrictracEnvironment as Environment>::StateType::size(),
|
||||
dense_size,
|
||||
<TrictracEnvironment as Environment>::ActionType::size(),
|
||||
)
|
||||
.load_record(record)
|
||||
})
|
||||
.ok()
|
||||
}
|
||||
|
||||
pub fn demo_model<B: Backend, M: PPOModel<B>>(agent: PPO<TrictracEnvironment, B, M>) {
|
||||
let mut env = TrictracEnvironment::new(true);
|
||||
let mut done = false;
|
||||
while !done {
|
||||
// let action = match infer_action(&agent, &env, state) {
|
||||
let action = match infer_action(&agent, &env) {
|
||||
Some(value) => value,
|
||||
None => break,
|
||||
};
|
||||
// Execute action
|
||||
let snapshot = env.step(action);
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
|
||||
fn infer_action<B: Backend, M: PPOModel<B>>(
|
||||
agent: &PPO<TrictracEnvironment, B, M>,
|
||||
env: &TrictracEnvironment,
|
||||
) -> Option<TrictracAction> {
|
||||
let state = env.state();
|
||||
panic!("how to do that ?");
|
||||
None
|
||||
// Get q-values
|
||||
// let q_values = agent
|
||||
// .model()
|
||||
// .as_ref()
|
||||
// .unwrap()
|
||||
// .infer(state.to_tensor().unsqueeze());
|
||||
// // Get valid actions
|
||||
// let valid_actions_indices = get_valid_action_indices(&env.game);
|
||||
// if valid_actions_indices.is_empty() {
|
||||
// return None; // No valid actions, end of episode
|
||||
// }
|
||||
// // Set non valid actions q-values to lowest
|
||||
// let mut masked_q_values = q_values.clone();
|
||||
// let q_values_vec: Vec<f32> = q_values.into_data().into_vec().unwrap();
|
||||
// for (index, q_value) in q_values_vec.iter().enumerate() {
|
||||
// if !valid_actions_indices.contains(&index) {
|
||||
// masked_q_values = masked_q_values.clone().mask_fill(
|
||||
// masked_q_values.clone().equal_elem(*q_value),
|
||||
// f32::NEG_INFINITY,
|
||||
// );
|
||||
// }
|
||||
// }
|
||||
// // Get best action (highest q-value)
|
||||
// let action_index = masked_q_values.argmax(1).into_scalar().to_u32();
|
||||
// let action = TrictracAction::from(action_index);
|
||||
// Some(action)
|
||||
}
|
||||
|
|
@ -1,4 +1,5 @@
|
|||
use crate::burnrl::environment::TrictracEnvironment;
|
||||
use crate::burnrl::utils::Config;
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Initializer, Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
|
|
@ -7,7 +8,6 @@ use burn::tensor::backend::{AutodiffBackend, Backend};
|
|||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{PPOModel, PPOOutput, PPOTrainingConfig, PPO};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::fmt;
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
|
|
@ -54,64 +54,11 @@ impl<B: Backend> PPOModel<B> for Net<B> {}
|
|||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 512;
|
||||
|
||||
pub struct PpoConfig {
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
|
||||
pub gamma: f32,
|
||||
pub lambda: f32,
|
||||
pub epsilon_clip: f32,
|
||||
pub critic_weight: f32,
|
||||
pub entropy_weight: f32,
|
||||
pub learning_rate: f32,
|
||||
pub epochs: usize,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
}
|
||||
|
||||
impl fmt::Display for PpoConfig {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("lambda={:?}\n", self.lambda));
|
||||
s.push_str(&format!("epsilon_clip={:?}\n", self.epsilon_clip));
|
||||
s.push_str(&format!("critic_weight={:?}\n", self.critic_weight));
|
||||
s.push_str(&format!("entropy_weight={:?}\n", self.entropy_weight));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("epochs={:?}\n", self.epochs));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for PpoConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 256,
|
||||
|
||||
gamma: 0.99,
|
||||
lambda: 0.95,
|
||||
epsilon_clip: 0.2,
|
||||
critic_weight: 0.5,
|
||||
entropy_weight: 0.01,
|
||||
learning_rate: 0.001,
|
||||
epochs: 8,
|
||||
batch_size: 8,
|
||||
clip_grad: 100.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
type MyAgent<E, B> = PPO<E, B, Net<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
conf: &PpoConfig,
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
// ) -> PPO<E, B, Net<B>> {
|
||||
) -> impl Agent<E> {
|
||||
|
|
@ -179,6 +126,9 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
memory.clear();
|
||||
}
|
||||
|
||||
agent.valid(model)
|
||||
// agent
|
||||
let valid_agent = agent.valid(model);
|
||||
if let Some(path) = &conf.save_path {
|
||||
// save_model(???, path);
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
|
@ -1,45 +0,0 @@
|
|||
use bot::burnrl::environment;
|
||||
use bot::burnrl::sac::{sac_model, utils::demo_model};
|
||||
use burn::backend::{Autodiff, NdArray};
|
||||
use burn_rl::agent::SAC;
|
||||
use burn_rl::base::ElemType;
|
||||
|
||||
type Backend = Autodiff<NdArray<ElemType>>;
|
||||
type Env = environment::TrictracEnvironment;
|
||||
|
||||
fn main() {
|
||||
// println!("> Entraînement");
|
||||
|
||||
// See also MEMORY_SIZE in dqn_model.rs : 8192
|
||||
let conf = sac_model::SacConfig {
|
||||
// defaults
|
||||
num_episodes: 50, // 40
|
||||
max_steps: 1000, // 1000 max steps by episode
|
||||
dense_size: 256, // 128 neural network complexity (default 128)
|
||||
|
||||
gamma: 0.999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
|
||||
tau: 0.005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
|
||||
// plus lente moins sensible aux coups de chance
|
||||
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
|
||||
// converger
|
||||
batch_size: 32, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
|
||||
clip_grad: 1.0, // 1.0 limite max de correction à apporter au gradient
|
||||
min_probability: 1e-9,
|
||||
};
|
||||
println!("{conf}----------");
|
||||
let valid_agent = sac_model::run::<Env, Backend>(&conf, false); //true);
|
||||
|
||||
// let valid_agent = agent.valid();
|
||||
|
||||
// println!("> Sauvegarde du modèle de validation");
|
||||
//
|
||||
// let path = "bot/models/burnrl_dqn".to_string();
|
||||
// save_model(valid_agent.model().as_ref().unwrap(), &path);
|
||||
//
|
||||
// println!("> Chargement du modèle pour test");
|
||||
// let loaded_model = load_model(conf.dense_size, &path);
|
||||
// let loaded_agent = DQN::new(loaded_model.unwrap());
|
||||
//
|
||||
// println!("> Test avec le modèle chargé");
|
||||
// demo_model(loaded_agent);
|
||||
}
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
pub mod sac_model;
|
||||
pub mod utils;
|
||||
|
|
@ -1,78 +0,0 @@
|
|||
use crate::burnrl::environment::{TrictracAction, TrictracEnvironment};
|
||||
use crate::burnrl::sac::sac_model;
|
||||
use crate::training_common::get_valid_action_indices;
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::{Module, Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::cast::ToElement;
|
||||
use burn::tensor::Tensor;
|
||||
// use burn_rl::agent::{SACModel, SAC};
|
||||
use burn_rl::base::{Agent, ElemType, Environment};
|
||||
|
||||
// pub fn save_model(model: &sac_model::Net<NdArray<ElemType>>, path: &String) {
|
||||
// let recorder = CompactRecorder::new();
|
||||
// let model_path = format!("{path}.mpk");
|
||||
// println!("Modèle de validation sauvegardé : {model_path}");
|
||||
// recorder
|
||||
// .record(model.clone().into_record(), model_path.into())
|
||||
// .unwrap();
|
||||
// }
|
||||
//
|
||||
// pub fn load_model(dense_size: usize, path: &String) -> Option<sac_model::Net<NdArray<ElemType>>> {
|
||||
// let model_path = format!("{path}.mpk");
|
||||
// // println!("Chargement du modèle depuis : {model_path}");
|
||||
//
|
||||
// CompactRecorder::new()
|
||||
// .load(model_path.into(), &NdArrayDevice::default())
|
||||
// .map(|record| {
|
||||
// dqn_model::Net::new(
|
||||
// <TrictracEnvironment as Environment>::StateType::size(),
|
||||
// dense_size,
|
||||
// <TrictracEnvironment as Environment>::ActionType::size(),
|
||||
// )
|
||||
// .load_record(record)
|
||||
// })
|
||||
// .ok()
|
||||
// }
|
||||
//
|
||||
|
||||
pub fn demo_model<E: Environment>(agent: impl Agent<E>) {
|
||||
let mut env = E::new(true);
|
||||
let mut state = env.state();
|
||||
let mut done = false;
|
||||
while !done {
|
||||
if let Some(action) = agent.react(&state) {
|
||||
let snapshot = env.step(action);
|
||||
state = *snapshot.state();
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn soft_update_tensor<const N: usize, B: Backend>(
|
||||
this: &Param<Tensor<B, N>>,
|
||||
that: &Param<Tensor<B, N>>,
|
||||
tau: ElemType,
|
||||
) -> Param<Tensor<B, N>> {
|
||||
let that_weight = that.val();
|
||||
let this_weight = this.val();
|
||||
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
|
||||
|
||||
Param::initialized(ParamId::new(), new_weight)
|
||||
}
|
||||
|
||||
pub fn soft_update_linear<B: Backend>(
|
||||
this: Linear<B>,
|
||||
that: &Linear<B>,
|
||||
tau: ElemType,
|
||||
) -> Linear<B> {
|
||||
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
|
||||
let bias = match (&this.bias, &that.bias) {
|
||||
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
Linear::<B> { weight, bias }
|
||||
}
|
||||
|
|
@ -1,14 +1,15 @@
|
|||
use crate::burnrl::environment::TrictracEnvironment;
|
||||
use crate::burnrl::sac::utils::soft_update_linear;
|
||||
use crate::burnrl::utils::{soft_update_linear, Config};
|
||||
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
||||
use burn::module::Module;
|
||||
use burn::nn::{Linear, LinearConfig};
|
||||
use burn::optim::AdamWConfig;
|
||||
use burn::record::{CompactRecorder, Recorder};
|
||||
use burn::tensor::activation::{relu, softmax};
|
||||
use burn::tensor::backend::{AutodiffBackend, Backend};
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::agent::{SACActor, SACCritic, SACNets, SACOptimizer, SACTrainingConfig, SAC};
|
||||
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
||||
use std::fmt;
|
||||
use std::time::SystemTime;
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
|
|
@ -92,57 +93,11 @@ impl<B: Backend> SACCritic<B> for Critic<B> {
|
|||
#[allow(unused)]
|
||||
const MEMORY_SIZE: usize = 4096;
|
||||
|
||||
pub struct SacConfig {
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
|
||||
pub gamma: f32,
|
||||
pub tau: f32,
|
||||
pub learning_rate: f32,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
pub min_probability: f32,
|
||||
}
|
||||
|
||||
impl Default for SacConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 32,
|
||||
|
||||
gamma: 0.999,
|
||||
tau: 0.005,
|
||||
learning_rate: 0.001,
|
||||
batch_size: 32,
|
||||
clip_grad: 1.0,
|
||||
min_probability: 1e-9,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for SacConfig {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("tau={:?}\n", self.tau));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
s.push_str(&format!("clip_grad={:?}\n", self.clip_grad));
|
||||
s.push_str(&format!("min_probability={:?}\n", self.min_probability));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
type MyAgent<E, B> = SAC<E, B, Actor<B>>;
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
||||
conf: &SacConfig,
|
||||
conf: &Config,
|
||||
visualized: bool,
|
||||
) -> impl Agent<E> {
|
||||
let mut env = E::new(visualized);
|
||||
|
|
@ -229,5 +184,35 @@ pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|||
}
|
||||
}
|
||||
|
||||
agent.valid(nets.actor)
|
||||
let valid_agent = agent.valid(nets.actor);
|
||||
if let Some(path) = &conf.save_path {
|
||||
// save_model(???, path);
|
||||
}
|
||||
valid_agent
|
||||
}
|
||||
|
||||
// pub fn save_model(model: ???, path: &String) {
|
||||
// let recorder = CompactRecorder::new();
|
||||
// let model_path = format!("{path}.mpk");
|
||||
// println!("info: Modèle de validation sauvegardé : {model_path}");
|
||||
// recorder
|
||||
// .record(model.clone().into_record(), model_path.into())
|
||||
// .unwrap();
|
||||
// }
|
||||
//
|
||||
// pub fn load_model(dense_size: usize, path: &String) -> Option<Actor<NdArray<ElemType>>> {
|
||||
// let model_path = format!("{path}.mpk");
|
||||
// // println!("Chargement du modèle depuis : {model_path}");
|
||||
//
|
||||
// CompactRecorder::new()
|
||||
// .load(model_path.into(), &NdArrayDevice::default())
|
||||
// .map(|record| {
|
||||
// Actor::new(
|
||||
// <TrictracEnvironment as Environment>::StateType::size(),
|
||||
// dense_size,
|
||||
// <TrictracEnvironment as Environment>::ActionType::size(),
|
||||
// )
|
||||
// .load_record(record)
|
||||
// })
|
||||
// .ok()
|
||||
// }
|
||||
121
bot/src/burnrl/utils.rs
Normal file
121
bot/src/burnrl/utils.rs
Normal file
|
|
@ -0,0 +1,121 @@
|
|||
use burn::module::{Param, ParamId};
|
||||
use burn::nn::Linear;
|
||||
use burn::tensor::backend::Backend;
|
||||
use burn::tensor::Tensor;
|
||||
use burn_rl::base::{Agent, ElemType, Environment};
|
||||
|
||||
pub struct Config {
|
||||
pub save_path: Option<String>,
|
||||
pub max_steps: usize,
|
||||
pub num_episodes: usize,
|
||||
pub dense_size: usize,
|
||||
|
||||
pub gamma: f32,
|
||||
pub tau: f32,
|
||||
pub learning_rate: f32,
|
||||
pub batch_size: usize,
|
||||
pub clip_grad: f32,
|
||||
|
||||
// for SAC
|
||||
pub min_probability: f32,
|
||||
|
||||
// for DQN
|
||||
pub eps_start: f64,
|
||||
pub eps_end: f64,
|
||||
pub eps_decay: f64,
|
||||
|
||||
// for PPO
|
||||
pub lambda: f32,
|
||||
pub epsilon_clip: f32,
|
||||
pub critic_weight: f32,
|
||||
pub entropy_weight: f32,
|
||||
pub epochs: usize,
|
||||
}
|
||||
|
||||
impl Default for Config {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
save_path: None,
|
||||
max_steps: 2000,
|
||||
num_episodes: 1000,
|
||||
dense_size: 256,
|
||||
gamma: 0.999,
|
||||
tau: 0.005,
|
||||
learning_rate: 0.001,
|
||||
batch_size: 32,
|
||||
clip_grad: 100.0,
|
||||
min_probability: 1e-9,
|
||||
eps_start: 0.9,
|
||||
eps_end: 0.05,
|
||||
eps_decay: 1000.0,
|
||||
lambda: 0.95,
|
||||
epsilon_clip: 0.2,
|
||||
critic_weight: 0.5,
|
||||
entropy_weight: 0.01,
|
||||
epochs: 8,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Config {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
let mut s = String::new();
|
||||
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
|
||||
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
|
||||
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
|
||||
s.push_str(&format!("eps_start={:?}\n", self.eps_start));
|
||||
s.push_str(&format!("eps_end={:?}\n", self.eps_end));
|
||||
s.push_str(&format!("eps_decay={:?}\n", self.eps_decay));
|
||||
s.push_str(&format!("gamma={:?}\n", self.gamma));
|
||||
s.push_str(&format!("tau={:?}\n", self.tau));
|
||||
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
|
||||
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
|
||||
s.push_str(&format!("clip_grad={:?}\n", self.clip_grad));
|
||||
s.push_str(&format!("min_probability={:?}\n", self.min_probability));
|
||||
s.push_str(&format!("lambda={:?}\n", self.lambda));
|
||||
s.push_str(&format!("epsilon_clip={:?}\n", self.epsilon_clip));
|
||||
s.push_str(&format!("critic_weight={:?}\n", self.critic_weight));
|
||||
s.push_str(&format!("entropy_weight={:?}\n", self.entropy_weight));
|
||||
s.push_str(&format!("epochs={:?}\n", self.epochs));
|
||||
write!(f, "{s}")
|
||||
}
|
||||
}
|
||||
|
||||
pub fn demo_model<E: Environment>(agent: impl Agent<E>) {
|
||||
let mut env = E::new(true);
|
||||
let mut state = env.state();
|
||||
let mut done = false;
|
||||
while !done {
|
||||
if let Some(action) = agent.react(&state) {
|
||||
let snapshot = env.step(action);
|
||||
state = *snapshot.state();
|
||||
done = snapshot.done();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn soft_update_tensor<const N: usize, B: Backend>(
|
||||
this: &Param<Tensor<B, N>>,
|
||||
that: &Param<Tensor<B, N>>,
|
||||
tau: ElemType,
|
||||
) -> Param<Tensor<B, N>> {
|
||||
let that_weight = that.val();
|
||||
let this_weight = this.val();
|
||||
let new_weight = this_weight * (1.0 - tau) + that_weight * tau;
|
||||
|
||||
Param::initialized(ParamId::new(), new_weight)
|
||||
}
|
||||
|
||||
pub fn soft_update_linear<B: Backend>(
|
||||
this: Linear<B>,
|
||||
that: &Linear<B>,
|
||||
tau: ElemType,
|
||||
) -> Linear<B> {
|
||||
let weight = soft_update_tensor(&this.weight, &that.weight, tau);
|
||||
let bias = match (&this.bias, &that.bias) {
|
||||
(Some(this_bias), Some(that_bias)) => Some(soft_update_tensor(this_bias, that_bias, tau)),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
Linear::<B> { weight, bias }
|
||||
}
|
||||
|
|
@ -6,8 +6,9 @@ use crate::{BotStrategy, CheckerMove, Color, GameState, PlayerId};
|
|||
use log::info;
|
||||
use store::MoveRules;
|
||||
|
||||
use crate::burnrl::dqn::{dqn_model, utils};
|
||||
use crate::burnrl::dqn_model;
|
||||
use crate::burnrl::environment;
|
||||
use crate::burnrl::utils;
|
||||
use crate::training_common::{get_valid_action_indices, sample_valid_action, TrictracAction};
|
||||
|
||||
type DqnBurnNetwork = dqn_model::Net<NdArray<ElemType>>;
|
||||
|
|
@ -40,7 +41,7 @@ impl DqnBurnStrategy {
|
|||
pub fn new_with_model(model_path: &String) -> Self {
|
||||
info!("Loading model {model_path:?}");
|
||||
let mut strategy = Self::new();
|
||||
strategy.model = utils::load_model(256, model_path);
|
||||
strategy.model = dqn_model::load_model(256, model_path);
|
||||
strategy
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue