feat: wip bot burn ppo

This commit is contained in:
Henri Bourcereau 2025-08-19 17:46:22 +02:00
parent fcd50bc0f2
commit 088124fad1
6 changed files with 332 additions and 1 deletions

View file

@ -17,6 +17,10 @@ path = "src/burnrl/dqn_big/main.rs"
name = "train_dqn_burn" name = "train_dqn_burn"
path = "src/burnrl/dqn/main.rs" path = "src/burnrl/dqn/main.rs"
[[bin]]
name = "train_ppo_burn"
path = "src/burnrl/ppo/main.rs"
[[bin]] [[bin]]
name = "train_dqn_simple" name = "train_dqn_simple"
path = "src/dqn_simple/main.rs" path = "src/dqn_simple/main.rs"

View file

@ -4,7 +4,8 @@ ROOT="$(cd "$(dirname "$0")" && pwd)/../.."
LOGS_DIR="$ROOT/bot/models/logs" LOGS_DIR="$ROOT/bot/models/logs"
CFG_SIZE=12 CFG_SIZE=12
BINBOT=train_dqn_burn BINBOT=train_ppo_burn
# BINBOT=train_dqn_burn
# BINBOT=train_dqn_burn_big # BINBOT=train_dqn_burn_big
# BINBOT=train_dqn_burn_before # BINBOT=train_dqn_burn_before
OPPONENT="random" OPPONENT="random"

View file

@ -0,0 +1,52 @@
use bot::burnrl::environment;
use bot::burnrl::ppo::{
ppo_model,
utils::{demo_model, load_model, save_model},
};
use burn::backend::{Autodiff, NdArray};
use burn_rl::agent::PPO;
use burn_rl::base::ElemType;
type Backend = Autodiff<NdArray<ElemType>>;
type Env = environment::TrictracEnvironment;
fn main() {
// println!("> Entraînement");
// See also MEMORY_SIZE in dqn_model.rs : 8192
let conf = ppo_model::PpoConfig {
// defaults
num_episodes: 50, // 40
max_steps: 1000, // 1000 max steps by episode
dense_size: 256, // 128 neural network complexity (default 128)
gamma: 0.9999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
// plus lente moins sensible aux coups de chance
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
// converger
batch_size: 128, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
clip_grad: 70.0, // 100 limite max de correction à apporter au gradient (default 100)
lambda: 0.95,
epsilon_clip: 0.2,
critic_weight: 0.5,
entropy_weight: 0.01,
epochs: 8,
};
println!("{conf}----------");
let valid_agent = ppo_model::run::<Env, Backend>(&conf, false); //true);
// let valid_agent = agent.valid(model);
println!("> Sauvegarde du modèle de validation");
let path = "bot/models/burnrl_ppo".to_string();
panic!("how to do that : save model");
// save_model(valid_agent.model().as_ref().unwrap(), &path);
// println!("> Chargement du modèle pour test");
// let loaded_model = load_model(conf.dense_size, &path);
// let loaded_agent = PPO::new(loaded_model.unwrap());
//
// println!("> Test avec le modèle chargé");
// demo_model(loaded_agent);
}

View file

@ -0,0 +1,2 @@
pub mod ppo_model;
pub mod utils;

View file

@ -0,0 +1,184 @@
use crate::burnrl::environment::TrictracEnvironment;
use burn::module::Module;
use burn::nn::{Initializer, Linear, LinearConfig};
use burn::optim::AdamWConfig;
use burn::tensor::activation::{relu, softmax};
use burn::tensor::backend::{AutodiffBackend, Backend};
use burn::tensor::Tensor;
use burn_rl::agent::{PPOModel, PPOOutput, PPOTrainingConfig, PPO};
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
use std::fmt;
use std::time::SystemTime;
#[derive(Module, Debug)]
pub struct Net<B: Backend> {
linear: Linear<B>,
linear_actor: Linear<B>,
linear_critic: Linear<B>,
}
impl<B: Backend> Net<B> {
#[allow(unused)]
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
let initializer = Initializer::XavierUniform { gain: 1.0 };
Self {
linear: LinearConfig::new(input_size, dense_size)
.with_initializer(initializer.clone())
.init(&Default::default()),
linear_actor: LinearConfig::new(dense_size, output_size)
.with_initializer(initializer.clone())
.init(&Default::default()),
linear_critic: LinearConfig::new(dense_size, 1)
.with_initializer(initializer)
.init(&Default::default()),
}
}
}
impl<B: Backend> Model<B, Tensor<B, 2>, PPOOutput<B>, Tensor<B, 2>> for Net<B> {
fn forward(&self, input: Tensor<B, 2>) -> PPOOutput<B> {
let layer_0_output = relu(self.linear.forward(input));
let policies = softmax(self.linear_actor.forward(layer_0_output.clone()), 1);
let values = self.linear_critic.forward(layer_0_output);
PPOOutput::<B>::new(policies, values)
}
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
let layer_0_output = relu(self.linear.forward(input));
softmax(self.linear_actor.forward(layer_0_output.clone()), 1)
}
}
impl<B: Backend> PPOModel<B> for Net<B> {}
#[allow(unused)]
const MEMORY_SIZE: usize = 512;
pub struct PpoConfig {
pub max_steps: usize,
pub num_episodes: usize,
pub dense_size: usize,
pub gamma: f32,
pub lambda: f32,
pub epsilon_clip: f32,
pub critic_weight: f32,
pub entropy_weight: f32,
pub learning_rate: f32,
pub epochs: usize,
pub batch_size: usize,
pub clip_grad: f32,
}
impl fmt::Display for PpoConfig {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut s = String::new();
s.push_str(&format!("max_steps={:?}\n", self.max_steps));
s.push_str(&format!("num_episodes={:?}\n", self.num_episodes));
s.push_str(&format!("dense_size={:?}\n", self.dense_size));
s.push_str(&format!("gamma={:?}\n", self.gamma));
s.push_str(&format!("lambda={:?}\n", self.lambda));
s.push_str(&format!("epsilon_clip={:?}\n", self.epsilon_clip));
s.push_str(&format!("critic_weight={:?}\n", self.critic_weight));
s.push_str(&format!("entropy_weight={:?}\n", self.entropy_weight));
s.push_str(&format!("learning_rate={:?}\n", self.learning_rate));
s.push_str(&format!("epochs={:?}\n", self.epochs));
s.push_str(&format!("batch_size={:?}\n", self.batch_size));
write!(f, "{s}")
}
}
impl Default for PpoConfig {
fn default() -> Self {
Self {
max_steps: 2000,
num_episodes: 1000,
dense_size: 256,
gamma: 0.99,
lambda: 0.95,
epsilon_clip: 0.2,
critic_weight: 0.5,
entropy_weight: 0.01,
learning_rate: 0.001,
epochs: 8,
batch_size: 8,
clip_grad: 100.0,
}
}
}
type MyAgent<E, B> = PPO<E, B, Net<B>>;
#[allow(unused)]
pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
conf: &PpoConfig,
visualized: bool,
// ) -> PPO<E, B, Net<B>> {
) -> impl Agent<E> {
let mut env = E::new(visualized);
env.as_mut().max_steps = conf.max_steps;
let mut model = Net::<B>::new(
<<E as Environment>::StateType as State>::size(),
conf.dense_size,
<<E as Environment>::ActionType as Action>::size(),
);
let agent = MyAgent::default();
let config = PPOTrainingConfig {
gamma: conf.gamma,
lambda: conf.lambda,
epsilon_clip: conf.epsilon_clip,
critic_weight: conf.critic_weight,
entropy_weight: conf.entropy_weight,
learning_rate: conf.learning_rate,
epochs: conf.epochs,
batch_size: conf.batch_size,
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
conf.clip_grad,
)),
};
let mut optimizer = AdamWConfig::new()
.with_grad_clipping(config.clip_grad.clone())
.init();
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
for episode in 0..conf.num_episodes {
let mut episode_done = false;
let mut episode_reward = 0.0;
let mut episode_duration = 0_usize;
let mut now = SystemTime::now();
env.reset();
while !episode_done {
let state = env.state();
if let Some(action) = MyAgent::<E, _>::react_with_model(&state, &model) {
let snapshot = env.step(action);
episode_reward += <<E as Environment>::RewardType as Into<ElemType>>::into(
snapshot.reward().clone(),
);
memory.push(
state,
*snapshot.state(),
action,
snapshot.reward().clone(),
snapshot.done(),
);
episode_duration += 1;
episode_done = snapshot.done() || episode_duration >= conf.max_steps;
}
}
println!(
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"duration\": {}}}",
now.elapsed().unwrap().as_secs(),
);
now = SystemTime::now();
model = MyAgent::train::<MEMORY_SIZE>(model, &memory, &mut optimizer, &config);
memory.clear();
}
agent.valid(model)
// agent
}

View file

@ -0,0 +1,88 @@
use crate::burnrl::environment::{TrictracAction, TrictracEnvironment};
use crate::burnrl::ppo::ppo_model;
use crate::training_common::get_valid_action_indices;
use burn::backend::{ndarray::NdArrayDevice, NdArray};
use burn::module::{Module, Param, ParamId};
use burn::nn::Linear;
use burn::record::{CompactRecorder, Recorder};
use burn::tensor::backend::Backend;
use burn::tensor::cast::ToElement;
use burn::tensor::Tensor;
use burn_rl::agent::{PPOModel, PPO};
use burn_rl::base::{Action, ElemType, Environment, State};
pub fn save_model(model: &ppo_model::Net<NdArray<ElemType>>, path: &String) {
let recorder = CompactRecorder::new();
let model_path = format!("{path}.mpk");
println!("Modèle de validation sauvegardé : {model_path}");
recorder
.record(model.clone().into_record(), model_path.into())
.unwrap();
}
pub fn load_model(dense_size: usize, path: &String) -> Option<ppo_model::Net<NdArray<ElemType>>> {
let model_path = format!("{path}.mpk");
// println!("Chargement du modèle depuis : {model_path}");
CompactRecorder::new()
.load(model_path.into(), &NdArrayDevice::default())
.map(|record| {
ppo_model::Net::new(
<TrictracEnvironment as Environment>::StateType::size(),
dense_size,
<TrictracEnvironment as Environment>::ActionType::size(),
)
.load_record(record)
})
.ok()
}
pub fn demo_model<B: Backend, M: PPOModel<B>>(agent: PPO<TrictracEnvironment, B, M>) {
let mut env = TrictracEnvironment::new(true);
let mut done = false;
while !done {
// let action = match infer_action(&agent, &env, state) {
let action = match infer_action(&agent, &env) {
Some(value) => value,
None => break,
};
// Execute action
let snapshot = env.step(action);
done = snapshot.done();
}
}
fn infer_action<B: Backend, M: PPOModel<B>>(
agent: &PPO<TrictracEnvironment, B, M>,
env: &TrictracEnvironment,
) -> Option<TrictracAction> {
let state = env.state();
panic!("how to do that ?");
None
// Get q-values
// let q_values = agent
// .model()
// .as_ref()
// .unwrap()
// .infer(state.to_tensor().unsqueeze());
// // Get valid actions
// let valid_actions_indices = get_valid_action_indices(&env.game);
// if valid_actions_indices.is_empty() {
// return None; // No valid actions, end of episode
// }
// // Set non valid actions q-values to lowest
// let mut masked_q_values = q_values.clone();
// let q_values_vec: Vec<f32> = q_values.into_data().into_vec().unwrap();
// for (index, q_value) in q_values_vec.iter().enumerate() {
// if !valid_actions_indices.contains(&index) {
// masked_q_values = masked_q_values.clone().mask_fill(
// masked_q_values.clone().equal_elem(*q_value),
// f32::NEG_INFINITY,
// );
// }
// }
// // Get best action (highest q-value)
// let action_index = masked_q_values.argmax(1).into_scalar().to_u32();
// let action = TrictracAction::from(action_index);
// Some(action)
}