trictrac/bot/src/burnrl/main.rs

36 lines
1.1 KiB
Rust
Raw Normal View History

2025-07-23 17:25:05 +02:00
use bot::burnrl::{dqn_model, environment, utils::demo_model};
2025-07-08 21:58:15 +02:00
use burn::backend::{Autodiff, NdArray};
2025-07-23 21:16:28 +02:00
use burn::module::Module;
use burn::record::{CompactRecorder, Recorder};
use burn_rl::agent::DQN;
2025-07-08 21:58:15 +02:00
use burn_rl::base::ElemType;
type Backend = Autodiff<NdArray<ElemType>>;
type Env = environment::TrictracEnvironment;
fn main() {
2025-07-23 21:16:28 +02:00
println!("> Entraînement");
2025-07-23 17:25:05 +02:00
let num_episodes = 3;
let agent = dqn_model::run::<Env, Backend>(num_episodes, false); //true);
2025-07-23 21:16:28 +02:00
println!("> Sauvegarde");
save(&agent);
2025-07-08 21:58:15 +02:00
2025-07-23 21:16:28 +02:00
// cette ligne sert à extraire le "cerveau" de l'agent entraîné,
// sans les données nécessaires à l'entraînement
let valid_agent = agent.valid();
println!("> Test");
demo_model::<Env>(valid_agent);
}
fn save(agent: &DQN<Env, Backend, dqn_model::Net<Backend>>) {
let path = "models/burn_dqn".to_string();
let inference_network = agent.model().clone().into_record();
let recorder = CompactRecorder::new();
let model_path = format!("{}_model.burn", path);
println!("Modèle sauvegardé : {}", model_path);
recorder
.record(inference_network, model_path.into())
.unwrap();
2025-07-08 21:58:15 +02:00
}