trictrac/bot/src/burnrl/dqn_model.rs

143 lines
4.3 KiB
Rust
Raw Normal View History

2025-07-08 21:58:15 +02:00
use crate::burnrl::utils::soft_update_linear;
use burn::module::Module;
use burn::nn::{Linear, LinearConfig};
use burn::optim::AdamWConfig;
use burn::tensor::activation::relu;
use burn::tensor::backend::{AutodiffBackend, Backend};
use burn::tensor::Tensor;
use burn_rl::agent::DQN;
use burn_rl::agent::{DQNModel, DQNTrainingConfig};
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
#[derive(Module, Debug)]
pub struct Net<B: Backend> {
linear_0: Linear<B>,
linear_1: Linear<B>,
linear_2: Linear<B>,
}
impl<B: Backend> Net<B> {
#[allow(unused)]
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
Self {
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
}
}
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
(self.linear_0, self.linear_1, self.linear_2)
}
}
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Net<B> {
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
let layer_0_output = relu(self.linear_0.forward(input));
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
relu(self.linear_2.forward(layer_1_output))
}
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
self.forward(input)
}
}
impl<B: Backend> DQNModel<B> for Net<B> {
fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self {
let (linear_0, linear_1, linear_2) = this.consume();
Self {
linear_0: soft_update_linear(linear_0, &that.linear_0, tau),
linear_1: soft_update_linear(linear_1, &that.linear_1, tau),
linear_2: soft_update_linear(linear_2, &that.linear_2, tau),
}
}
}
#[allow(unused)]
const MEMORY_SIZE: usize = 4096;
const DENSE_SIZE: usize = 128;
const EPS_DECAY: f64 = 1000.0;
const EPS_START: f64 = 0.9;
const EPS_END: f64 = 0.05;
type MyAgent<E, B> = DQN<E, B, Net<B>>;
#[allow(unused)]
pub fn run<E: Environment, B: AutodiffBackend>(
num_episodes: usize,
visualized: bool,
) -> impl Agent<E> {
let mut env = E::new(visualized);
let model = Net::<B>::new(
<<E as Environment>::StateType as State>::size(),
DENSE_SIZE,
<<E as Environment>::ActionType as Action>::size(),
);
let mut agent = MyAgent::new(model);
let config = DQNTrainingConfig::default();
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
let mut optimizer = AdamWConfig::new()
.with_grad_clipping(config.clip_grad.clone())
.init();
let mut policy_net = agent.model().as_ref().unwrap().clone();
let mut step = 0_usize;
for episode in 0..num_episodes {
let mut episode_done = false;
let mut episode_reward: ElemType = 0.0;
let mut episode_duration = 0_usize;
let mut state = env.state();
while !episode_done {
let eps_threshold =
EPS_END + (EPS_START - EPS_END) * f64::exp(-(step as f64) / EPS_DECAY);
let action =
DQN::<E, B, Net<B>>::react_with_exploration(&policy_net, state, eps_threshold);
let snapshot = env.step(action);
episode_reward +=
<<E as Environment>::RewardType as Into<ElemType>>::into(snapshot.reward().clone());
memory.push(
state,
*snapshot.state(),
action,
snapshot.reward().clone(),
snapshot.done(),
);
if config.batch_size < memory.len() {
policy_net =
agent.train::<MEMORY_SIZE>(policy_net, &memory, &mut optimizer, &config);
}
step += 1;
episode_duration += 1;
if snapshot.done() || episode_duration >= E::MAX_STEPS {
env.reset();
episode_done = true;
println!(
"{{\"episode\": {}, \"reward\": {:.4}, \"duration\": {}}}",
episode, episode_reward, episode_duration
);
} else {
state = *snapshot.state();
}
}
}
agent.valid()
}