trictrac/bot/src/burnrl/main.rs

59 lines
2.3 KiB
Rust
Raw Normal View History

2025-08-20 13:09:57 +02:00
use bot::burnrl::sac_model as burn_model;
// use bot::burnrl::dqn_big_model as burn_model;
// use bot::burnrl::dqn_model as burn_model;
// use bot::burnrl::environment_big::TrictracEnvironment;
use bot::burnrl::environment::TrictracEnvironment;
use bot::burnrl::utils::{demo_model, Config};
use burn::backend::{Autodiff, NdArray};
use burn_rl::agent::SAC as MyAgent;
// use burn_rl::agent::DQN as MyAgent;
use burn_rl::base::ElemType;
type Backend = Autodiff<NdArray<ElemType>>;
type Env = TrictracEnvironment;
fn main() {
let path = "bot/models/burnrl_dqn".to_string();
let conf = Config {
save_path: Some(path.clone()),
num_episodes: 30, // 40
max_steps: 1000, // 1000 max steps by episode
dense_size: 256, // 128 neural network complexity (default 128)
gamma: 0.9999, // 0.999 discount factor. Plus élevé = encourage stratégies à long terme
tau: 0.0005, // 0.005 soft update rate. Taux de mise à jour du réseau cible. Plus bas = adaptation
// plus lente moins sensible aux coups de chance
learning_rate: 0.001, // 0.001 taille du pas. Bas : plus lent, haut : risque de ne jamais
// converger
batch_size: 128, // 32 nombre d'expériences passées sur lesquelles pour calcul de l'erreur moy.
clip_grad: 70.0, // 100 limite max de correction à apporter au gradient (default 100)
min_probability: 1e-9,
eps_start: 0.9, // 0.9 epsilon initial value (0.9 => more exploration)
eps_end: 0.05, // 0.05
// eps_decay higher = epsilon decrease slower
// used in : epsilon = eps_end + (eps_start - eps_end) * e^(-step / eps_decay);
// epsilon is updated at the start of each episode
eps_decay: 2000.0, // 1000 ?
lambda: 0.95,
epsilon_clip: 0.2,
critic_weight: 0.5,
entropy_weight: 0.01,
epochs: 8,
};
println!("{conf}----------");
let agent = burn_model::run::<Env, Backend>(&conf, false); //true);
// println!("> Chargement du modèle pour test");
// let loaded_model = burn_model::load_model(conf.dense_size, &path);
// let loaded_agent: MyAgent<Env, _, _> = MyAgent::new(loaded_model.unwrap());
//
// println!("> Test avec le modèle chargé");
// demo_model(loaded_agent);
// demo_model::<Env>(agent);
}