2025-08-20 13:09:57 +02:00
|
|
|
use crate::burnrl::environment_big::TrictracEnvironment;
|
|
|
|
|
use crate::burnrl::utils::{soft_update_linear, Config};
|
|
|
|
|
use burn::backend::{ndarray::NdArrayDevice, NdArray};
|
2025-08-11 17:24:59 +02:00
|
|
|
use burn::module::Module;
|
|
|
|
|
use burn::nn::{Linear, LinearConfig};
|
|
|
|
|
use burn::optim::AdamWConfig;
|
2025-08-20 13:09:57 +02:00
|
|
|
use burn::record::{CompactRecorder, Recorder};
|
2025-08-11 17:24:59 +02:00
|
|
|
use burn::tensor::activation::relu;
|
|
|
|
|
use burn::tensor::backend::{AutodiffBackend, Backend};
|
|
|
|
|
use burn::tensor::Tensor;
|
|
|
|
|
use burn_rl::agent::DQN;
|
|
|
|
|
use burn_rl::agent::{DQNModel, DQNTrainingConfig};
|
2025-08-20 13:09:57 +02:00
|
|
|
use burn_rl::base::{Action, Agent, ElemType, Environment, Memory, Model, State};
|
2025-08-11 17:24:59 +02:00
|
|
|
use std::time::SystemTime;
|
|
|
|
|
|
|
|
|
|
#[derive(Module, Debug)]
|
|
|
|
|
pub struct Net<B: Backend> {
|
|
|
|
|
linear_0: Linear<B>,
|
|
|
|
|
linear_1: Linear<B>,
|
|
|
|
|
linear_2: Linear<B>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<B: Backend> Net<B> {
|
|
|
|
|
#[allow(unused)]
|
|
|
|
|
pub fn new(input_size: usize, dense_size: usize, output_size: usize) -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
linear_0: LinearConfig::new(input_size, dense_size).init(&Default::default()),
|
|
|
|
|
linear_1: LinearConfig::new(dense_size, dense_size).init(&Default::default()),
|
|
|
|
|
linear_2: LinearConfig::new(dense_size, output_size).init(&Default::default()),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn consume(self) -> (Linear<B>, Linear<B>, Linear<B>) {
|
|
|
|
|
(self.linear_0, self.linear_1, self.linear_2)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<B: Backend> Model<B, Tensor<B, 2>, Tensor<B, 2>> for Net<B> {
|
|
|
|
|
fn forward(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
|
|
|
|
let layer_0_output = relu(self.linear_0.forward(input));
|
|
|
|
|
let layer_1_output = relu(self.linear_1.forward(layer_0_output));
|
|
|
|
|
|
|
|
|
|
relu(self.linear_2.forward(layer_1_output))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn infer(&self, input: Tensor<B, 2>) -> Tensor<B, 2> {
|
|
|
|
|
self.forward(input)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<B: Backend> DQNModel<B> for Net<B> {
|
|
|
|
|
fn soft_update(this: Self, that: &Self, tau: ElemType) -> Self {
|
|
|
|
|
let (linear_0, linear_1, linear_2) = this.consume();
|
|
|
|
|
|
|
|
|
|
Self {
|
|
|
|
|
linear_0: soft_update_linear(linear_0, &that.linear_0, tau),
|
|
|
|
|
linear_1: soft_update_linear(linear_1, &that.linear_1, tau),
|
|
|
|
|
linear_2: soft_update_linear(linear_2, &that.linear_2, tau),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[allow(unused)]
|
|
|
|
|
const MEMORY_SIZE: usize = 8192;
|
|
|
|
|
|
|
|
|
|
type MyAgent<E, B> = DQN<E, B, Net<B>>;
|
|
|
|
|
|
|
|
|
|
#[allow(unused)]
|
2025-08-20 13:09:57 +02:00
|
|
|
// pub fn run<E: Environment + AsMut<TrictracEnvironment>, B: AutodiffBackend>(
|
|
|
|
|
pub fn run<
|
|
|
|
|
E: Environment + AsMut<TrictracEnvironment>,
|
|
|
|
|
B: AutodiffBackend<InnerBackend = NdArray>,
|
|
|
|
|
>(
|
|
|
|
|
conf: &Config,
|
2025-08-11 17:24:59 +02:00
|
|
|
visualized: bool,
|
2025-08-20 13:09:57 +02:00
|
|
|
// ) -> DQN<E, B, Net<B>> {
|
|
|
|
|
) -> impl Agent<E> {
|
2025-08-11 17:24:59 +02:00
|
|
|
let mut env = E::new(visualized);
|
|
|
|
|
env.as_mut().max_steps = conf.max_steps;
|
|
|
|
|
|
|
|
|
|
let model = Net::<B>::new(
|
|
|
|
|
<<E as Environment>::StateType as State>::size(),
|
|
|
|
|
conf.dense_size,
|
|
|
|
|
<<E as Environment>::ActionType as Action>::size(),
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let mut agent = MyAgent::new(model);
|
|
|
|
|
|
|
|
|
|
// let config = DQNTrainingConfig::default();
|
|
|
|
|
let config = DQNTrainingConfig {
|
|
|
|
|
gamma: conf.gamma,
|
|
|
|
|
tau: conf.tau,
|
|
|
|
|
learning_rate: conf.learning_rate,
|
|
|
|
|
batch_size: conf.batch_size,
|
|
|
|
|
clip_grad: Some(burn::grad_clipping::GradientClippingConfig::Value(
|
|
|
|
|
conf.clip_grad,
|
|
|
|
|
)),
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let mut memory = Memory::<E, B, MEMORY_SIZE>::default();
|
|
|
|
|
|
|
|
|
|
let mut optimizer = AdamWConfig::new()
|
|
|
|
|
.with_grad_clipping(config.clip_grad.clone())
|
|
|
|
|
.init();
|
|
|
|
|
|
|
|
|
|
let mut policy_net = agent.model().as_ref().unwrap().clone();
|
|
|
|
|
|
|
|
|
|
let mut step = 0_usize;
|
|
|
|
|
|
|
|
|
|
for episode in 0..conf.num_episodes {
|
|
|
|
|
let mut episode_done = false;
|
|
|
|
|
let mut episode_reward: ElemType = 0.0;
|
|
|
|
|
let mut episode_duration = 0_usize;
|
|
|
|
|
let mut state = env.state();
|
|
|
|
|
let mut now = SystemTime::now();
|
|
|
|
|
|
|
|
|
|
while !episode_done {
|
|
|
|
|
let eps_threshold = conf.eps_end
|
|
|
|
|
+ (conf.eps_start - conf.eps_end) * f64::exp(-(step as f64) / conf.eps_decay);
|
|
|
|
|
let action =
|
|
|
|
|
DQN::<E, B, Net<B>>::react_with_exploration(&policy_net, state, eps_threshold);
|
|
|
|
|
let snapshot = env.step(action);
|
|
|
|
|
|
|
|
|
|
episode_reward +=
|
|
|
|
|
<<E as Environment>::RewardType as Into<ElemType>>::into(snapshot.reward().clone());
|
|
|
|
|
|
|
|
|
|
memory.push(
|
|
|
|
|
state,
|
|
|
|
|
*snapshot.state(),
|
|
|
|
|
action,
|
|
|
|
|
snapshot.reward().clone(),
|
|
|
|
|
snapshot.done(),
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
if config.batch_size < memory.len() {
|
|
|
|
|
policy_net =
|
|
|
|
|
agent.train::<MEMORY_SIZE>(policy_net, &memory, &mut optimizer, &config);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
step += 1;
|
|
|
|
|
episode_duration += 1;
|
|
|
|
|
|
|
|
|
|
if snapshot.done() || episode_duration >= conf.max_steps {
|
|
|
|
|
let envmut = env.as_mut();
|
2025-08-20 13:09:57 +02:00
|
|
|
let goodmoves_ratio = ((envmut.goodmoves_count as f32 / episode_duration as f32)
|
|
|
|
|
* 100.0)
|
|
|
|
|
.round() as u32;
|
2025-08-11 17:24:59 +02:00
|
|
|
println!(
|
2025-08-20 13:09:57 +02:00
|
|
|
"{{\"episode\": {episode}, \"reward\": {episode_reward:.4}, \"steps count\": {episode_duration}, \"epsilon\": {eps_threshold:.3}, \"goodmoves\": {}, \"ratio\": {}%, \"rollpoints\":{}, \"duration\": {}}}",
|
|
|
|
|
envmut.goodmoves_count,
|
|
|
|
|
goodmoves_ratio,
|
2025-08-11 17:24:59 +02:00
|
|
|
envmut.pointrolls_count,
|
|
|
|
|
now.elapsed().unwrap().as_secs(),
|
|
|
|
|
);
|
|
|
|
|
env.reset();
|
|
|
|
|
episode_done = true;
|
|
|
|
|
now = SystemTime::now();
|
|
|
|
|
} else {
|
|
|
|
|
state = *snapshot.state();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-08-20 13:09:57 +02:00
|
|
|
let valid_agent = agent.valid();
|
|
|
|
|
if let Some(path) = &conf.save_path {
|
|
|
|
|
save_model(valid_agent.model().as_ref().unwrap(), path);
|
|
|
|
|
}
|
|
|
|
|
valid_agent
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn save_model(model: &Net<NdArray<ElemType>>, path: &String) {
|
|
|
|
|
let recorder = CompactRecorder::new();
|
|
|
|
|
let model_path = format!("{path}.mpk");
|
|
|
|
|
println!("info: Modèle de validation sauvegardé : {model_path}");
|
|
|
|
|
recorder
|
|
|
|
|
.record(model.clone().into_record(), model_path.into())
|
|
|
|
|
.unwrap();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn load_model(dense_size: usize, path: &String) -> Option<Net<NdArray<ElemType>>> {
|
|
|
|
|
let model_path = format!("{path}.mpk");
|
|
|
|
|
// println!("Chargement du modèle depuis : {model_path}");
|
|
|
|
|
|
|
|
|
|
CompactRecorder::new()
|
|
|
|
|
.load(model_path.into(), &NdArrayDevice::default())
|
|
|
|
|
.map(|record| {
|
|
|
|
|
Net::new(
|
|
|
|
|
<TrictracEnvironment as Environment>::StateType::size(),
|
|
|
|
|
dense_size,
|
|
|
|
|
<TrictracEnvironment as Environment>::ActionType::size(),
|
|
|
|
|
)
|
|
|
|
|
.load_record(record)
|
|
|
|
|
})
|
|
|
|
|
.ok()
|
2025-08-11 17:24:59 +02:00
|
|
|
}
|